TEST - Catálogo BURRF
   

Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras /

Letellier, Emmanuel.

Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras / by Emmanuel Letellier. - xI, 165 páginas recurso en línea. - Lecture Notes in Mathematics, 1859 1617-9692 ; .

Springer eBooks

Preface -- Introduction -- Connected Reductive Groups and their Lie Algebras -- Deligne-Lusztig Induction -- Local Systems and Perverse Shaeves -- Geometrical Induction -- Deligne-Lusztig Induction and Fourier Transforms -- Fourier Transforms of the Characteristic Functions of the Adjoint Orbits -- References -- Index.

The study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lusztig’s character sheaves theory. He conjectures a commutation formula between Deligne-Lusztig induction and Fourier transforms that he proves in many cases. As an application the computation of the values of the trigonometric sums (on reductive Lie algebras) is shown to reduce to the computation of the generalized Green functions and to the computation of some fourth roots of unity.

9783540315612

10.1007/b104209 doi

QA174-183
Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha