TEST - Catálogo BURRF
   

Empirical Inference : (Registro nro. 277064)

Detalles MARC
000 -CABECERA
campo de control de longitud fija 05377nam a22003855i 4500
001 - NÚMERO DE CONTROL
campo de control 277064
003 - IDENTIFICADOR DEL NÚMERO DE CONTROL
campo de control MX-SnUAN
005 - FECHA Y HORA DE LA ÚLTIMA TRANSACCIÓN
campo de control 20170705134158.0
007 - CAMPO FIJO DE DESCRIPCIÓN FÍSICA--INFORMACIÓN GENERAL
campo de control de longitud fija cr nn 008mamaa
008 - DATOS DE LONGITUD FIJA--INFORMACIÓN GENERAL
campo de control de longitud fija 150903s2013 gw | o |||| 0|eng d
020 ## - NÚMERO INTERNACIONAL ESTÁNDAR DEL LIBRO
Número Internacional Estándar del Libro 9783642411366
-- 9783642411366
024 7# - IDENTIFICADOR DE OTROS ESTÁNDARES
Número estándar o código 10.1007/9783642411366
Fuente del número o código doi
035 ## - NÚMERO DE CONTROL DEL SISTEMA
Número de control de sistema vtls000362175
039 #9 - NIVEL DE CONTROL BIBLIOGRÁFICO Y DETALLES DE CODIFICACIÓN [OBSOLETO]
Nivel de reglas en descripción bibliográfica 201509031036
Nivel de esfuerzo utilizado para asignar no-encabezamientos de materia en puntos de acceso VLOAD
Nivel de esfuerzo utilizado en la asignación de encabezamientos de materia 201405070325
Nivel de esfuerzo utilizado para asignar clasificación VLOAD
-- 201402211043
-- staff
040 ## - FUENTE DE LA CATALOGACIÓN
Centro catalogador/agencia de origen MX-SnUAN
Lengua de catalogación spa
Centro/agencia transcriptor MX-SnUAN
Normas de descripción rda
050 #4 - CLASIFICACIÓN DE LA BIBLIOTECA DEL CONGRESO
Número de clasificación Q334-342
100 1# - ENTRADA PRINCIPAL--NOMBRE DE PERSONA
Nombre de persona Schölkopf, Bernhard.
Término indicativo de función/relación editor.
9 (RLIN) 299488
245 10 - MENCIÓN DE TÍTULO
Título Empirical Inference :
Resto del título Festschrift in Honor of Vladimir N. Vapnik /
Mención de responsabilidad, etc. edited by Bernhard Schölkopf, Zhiyuan Luo, Vladimir Vovk.
264 #1 - PRODUCCIÓN, PUBLICACIÓN, DISTRIBUCIÓN, FABRICACIÓN Y COPYRIGHT
Producción, publicación, distribución, fabricación y copyright Berlin, Heidelberg :
Nombre del de productor, editor, distribuidor, fabricante Springer Berlin Heidelberg :
-- Imprint: Springer,
Fecha de producción, publicación, distribución, fabricación o copyright 2013.
300 ## - DESCRIPCIÓN FÍSICA
Extensión xIx, 287 páginas 33 ilustraciones, 26 ilustraciones en color.
Otras características físicas recurso en línea.
336 ## - TIPO DE CONTENIDO
Término de tipo de contenido texto
Código de tipo de contenido txt
Fuente rdacontent
337 ## - TIPO DE MEDIO
Nombre/término del tipo de medio computadora
Código del tipo de medio c
Fuente rdamedia
338 ## - TIPO DE SOPORTE
Nombre/término del tipo de soporte recurso en línea
Código del tipo de soporte cr
Fuente rdacarrier
347 ## - CARACTERÍSTICAS DEL ARCHIVO DIGITAL
Tipo de archivo archivo de texto
Formato de codificación PDF
Fuente rda
500 ## - NOTA GENERAL
Nota general Springer eBooks
505 0# - NOTA DE CONTENIDO CON FORMATO
Nota de contenido con formato Part I - History of Statistical Learning Theory -- Chap. 1 - In Hindsight: Doklady Akademii Nauk SSSR, 181(4), 1968 -- Chap. 2 - On the Uniform Convergence of the Frequencies of Occurrence of Events to Their Probabilities -- Chap. 3 - Early History of Support Vector Machines -- Part II - Theory and Practice of Statistical Learning Theory -- Chap. 4 - Some Remarks on the Statistical Analysis of SVMs and Related Methods -- Chap. 5 - Explaining AdaBoost -- Chap. 6 - On the Relations and Differences Between Popper Dimension, Exclusion Dimension and VC-Dimension -- Chap. 7 - On Learnability, Complexity and Stability -- Chap. 8 - Loss Functions -- Chap. 9 - Statistical Learning Theory in Practice -- Chap. 10 - PAC-Bayesian Theory -- Chap. 11 - Kernel Ridge Regression -- Chap. 12 - Multi-task Learning for Computational Biology: Overview and Outlook -- Chap. 13 - Semi-supervised Learning in Causal and Anticausal Settings -- Chap. 14 - Strong Universal Consistent Estimate of the Minimum Mean-Squared Error -- Chap. 15 - The Median Hypothesis -- Chap. 16 - Efficient Transductive Online Learning via Randomized Rounding -- Chap. 17 - Pivotal Estimation in High-Dimensional Regression via Linear Programming -- Chap. 18 - Some Observations on Sparsity Inducing Regularization Methods for Machine Learning -- Chap. 19 - Sharp Oracle Inequalities in Low Rank Estimation -- Chap. 20 - On the Consistency of the Bootstrap Approach for Support Vector Machines and Related Kernel-Based Methods -- Chap. 21 - Kernels, Pre-images and Optimization -- Chap. 22 - Efficient Learning of Sparse Ranking Functions -- Chap. 23 - Direct Approximation of Divergences Between Probability Distributions -- Index.
520 ## - SUMARIO, ETC.
Sumario, etc. This book honours the outstanding contributions of Vladimir Vapnik, a rare example of a scientist for whom the following statements hold true simultaneously: his work led to the inception of a new field of research, the theory of statistical learning and empirical inference; he has lived to see the field blossom; and he is still as active as ever. He started analyzing learning algorithms in the 1960s and he invented the first version of the generalized portrait algorithm. He later developed one of the most successful methods in machine learning, the support vector machine (SVM) – more than just an algorithm, this was a new approach to learning problems, pioneering the use of functional analysis and convex optimization in machine learning.   Part I of this book contains three chapters describing and witnessing some of Vladimir Vapnik's contributions to science. In the first chapter, Léon Bottou discusses the seminal paper published in 1968 by Vapnik and Chervonenkis that lay the foundations of statistical learning theory, and the second chapter is an English-language translation of that original paper. In the third chapter, Alexey Chervonenkis presents a first-hand account of the early history of SVMs and valuable insights into the first steps in the development of the SVM in the framework of the generalised portrait method.   The remaining chapters, by leading scientists in domains such as statistics, theoretical computer science, and mathematics, address substantial topics in the theory and practice of statistical learning theory, including SVMs and other kernel-based methods, boosting, PAC-Bayesian theory, online and transductive learning, loss functions, learnable function classes, notions of complexity for function classes, multitask learning, and hypothesis selection. These contributions include historical and context notes, short surveys, and comments on future research directions.   This book will be of interest to researchers, engineers, and graduate students engaged with all aspects of statistical learning.
590 ## - NOTA LOCAL (RLIN)
Nota local Para consulta fuera de la UANL se requiere clave de acceso remoto.
700 1# - PUNTO DE ACCESO ADICIONAL--NOMBRE DE PERSONA
Nombre de persona Luo, Zhiyuan.
Término indicativo de función/relación editor.
9 (RLIN) 299489
700 1# - PUNTO DE ACCESO ADICIONAL--NOMBRE DE PERSONA
Nombre de persona Vovk, Vladimir.
Término indicativo de función/relación editor.
9 (RLIN) 299490
710 2# - PUNTO DE ACCESO ADICIONAL--NOMBRE DE ENTIDAD CORPORATIVA
Nombre de entidad corporativa o nombre de jurisdicción como elemento de entrada SpringerLink (Servicio en línea)
9 (RLIN) 299170
776 08 - ENTRADA/ENLACE A UN FORMATO FÍSICO ADICIONAL
Información de relación/Frase instructiva de referencia Edición impresa:
Número Internacional Estándar del Libro 9783642411359
856 40 - LOCALIZACIÓN Y ACCESO ELECTRÓNICOS
Identificador Uniforme del Recurso <a href="http://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-41136-6">http://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-41136-6</a>
Nota pública Conectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 ## - ELEMENTOS DE PUNTO DE ACCESO ADICIONAL (KOHA)
Tipo de ítem Koha Recurso en línea

No hay ítems disponibles.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha