Inference in Hidden Markov Models / (Registro nro. 278567)
[ vista simple ]
000 -CABECERA | |
---|---|
campo de control de longitud fija | 04842nam a22003975i 4500 |
001 - NÚMERO DE CONTROL | |
campo de control | 278567 |
003 - IDENTIFICADOR DEL NÚMERO DE CONTROL | |
campo de control | MX-SnUAN |
005 - FECHA Y HORA DE LA ÚLTIMA TRANSACCIÓN | |
campo de control | 20160429153909.0 |
007 - CAMPO FIJO DE DESCRIPCIÓN FÍSICA--INFORMACIÓN GENERAL | |
campo de control de longitud fija | cr nn 008mamaa |
008 - DATOS DE LONGITUD FIJA--INFORMACIÓN GENERAL | |
campo de control de longitud fija | 150903s2005 xxu| o |||| 0|eng d |
020 ## - NÚMERO INTERNACIONAL ESTÁNDAR DEL LIBRO | |
Número Internacional Estándar del Libro | 9780387289823 |
-- | 9780387289823 |
024 7# - IDENTIFICADOR DE OTROS ESTÁNDARES | |
Número estándar o código | 10.1007/0387289828 |
Fuente del número o código | doi |
035 ## - NÚMERO DE CONTROL DEL SISTEMA | |
Número de control de sistema | vtls000330691 |
039 #9 - NIVEL DE CONTROL BIBLIOGRÁFICO Y DETALLES DE CODIFICACIÓN [OBSOLETO] | |
Nivel de reglas en descripción bibliográfica | 201509030724 |
Nivel de esfuerzo utilizado para asignar no-encabezamientos de materia en puntos de acceso | VLOAD |
Nivel de esfuerzo utilizado en la asignación de encabezamientos de materia | 201404120518 |
Nivel de esfuerzo utilizado para asignar clasificación | VLOAD |
Nivel de esfuerzo utilizado en la asignación de encabezamientos de materia | 201404090259 |
Nivel de esfuerzo utilizado para asignar clasificación | VLOAD |
Nivel de esfuerzo utilizado en la asignación de encabezamientos de materia | 201401311348 |
Nivel de esfuerzo utilizado para asignar clasificación | staff |
-- | 201401301152 |
-- | staff |
040 ## - FUENTE DE LA CATALOGACIÓN | |
Centro catalogador/agencia de origen | MX-SnUAN |
Lengua de catalogación | spa |
Centro/agencia transcriptor | MX-SnUAN |
Normas de descripción | rda |
050 #4 - CLASIFICACIÓN DE LA BIBLIOTECA DEL CONGRESO | |
Número de clasificación | QA276-280 |
100 1# - ENTRADA PRINCIPAL--NOMBRE DE PERSONA | |
Nombre de persona | Cappé, Olivier. |
Término indicativo de función/relación | autor |
9 (RLIN) | 302274 |
245 10 - MENCIÓN DE TÍTULO | |
Título | Inference in Hidden Markov Models / |
Mención de responsabilidad, etc. | by Olivier Cappé, Eric Moulines, Tobias Rydén. |
264 #1 - PRODUCCIÓN, PUBLICACIÓN, DISTRIBUCIÓN, FABRICACIÓN Y COPYRIGHT | |
Producción, publicación, distribución, fabricación y copyright | New York, NY : |
Nombre del de productor, editor, distribuidor, fabricante | Springer New York, |
Fecha de producción, publicación, distribución, fabricación o copyright | 2005. |
300 ## - DESCRIPCIÓN FÍSICA | |
Extensión | xviii, 654 páginas, 78 ilustraciones |
Otras características físicas | recurso en línea. |
336 ## - TIPO DE CONTENIDO | |
Término de tipo de contenido | texto |
Código de tipo de contenido | txt |
Fuente | rdacontent |
337 ## - TIPO DE MEDIO | |
Nombre/término del tipo de medio | computadora |
Código del tipo de medio | c |
Fuente | rdamedia |
338 ## - TIPO DE SOPORTE | |
Nombre/término del tipo de soporte | recurso en línea |
Código del tipo de soporte | cr |
Fuente | rdacarrier |
347 ## - CARACTERÍSTICAS DEL ARCHIVO DIGITAL | |
Tipo de archivo | archivo de texto |
Formato de codificación | |
Fuente | rda |
490 0# - MENCIÓN DE SERIE | |
Mención de serie | Springer Series in Statistics, |
Número Internacional Normalizado para Publicaciones Seriadas | 0172-7397 |
500 ## - NOTA GENERAL | |
Nota general | Springer eBooks |
505 0# - NOTA DE CONTENIDO CON FORMATO | |
Nota de contenido con formato | Main Definitions and Notations -- Main Definitions and Notations -- State Inference -- Filtering and Smoothing Recursions -- Advanced Topics in Smoothing -- Applications of Smoothing -- Monte Carlo Methods -- Sequential Monte Carlo Methods -- Advanced Topics in Sequential Monte Carlo -- Analysis of Sequential Monte Carlo Methods -- Parameter Inference -- Maximum Likelihood Inference, Part I: Optimization Through Exact Smoothing -- Maximum Likelihood Inference, Part II: Monte Carlo Optimization -- Statistical Properties of the Maximum Likelihood Estimator -- Fully Bayesian Approaches -- Background and Complements -- Elements of Markov Chain Theory -- An Information-Theoretic Perspective on Order Estimation. |
520 ## - SUMARIO, ETC. | |
Sumario, etc. | Hidden Markov models have become a widely used class of statistical models with applications in diverse areas such as communications engineering, bioinformatics, finance and many more. This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces, which allow for exact algorithms for filtering, estimation etc. and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Simulation in hidden Markov models is addressed in five different chapters that cover both Markov chain Monte Carlo and sequential Monte Carlo approaches. Many examples illustrate the algorithms and theory. The book also carefully treats Gaussian linear state-space models and their extensions and it contains a chapter on general Markov chain theory and probabilistic aspects of hidden Markov models. This volume will suit anybody with an interest in inference for stochastic processes, and it will be useful for researchers and practitioners in areas such as statistics, signal processing, communications engineering, control theory, econometrics, finance and more. The algorithmic parts of the book do not require an advanced mathematical background, while the more theoretical parts require knowledge of probability theory at the measure-theoretical level. Olivier Cappé is Researcher for the French National Center for Scientific Research (CNRS). He received the Ph.D. degree in 1993 from Ecole Nationale Supérieure des Télécommunications, Paris, France, where he is currently a Research Associate. Most of his current research concerns computational statistics and statistical learning. Eric Moulines is Professor at Ecole Nationale Supérieure des Télécommunications (ENST), Paris, France. He graduated from Ecole Polytechnique, France, in 1984 and received the Ph.D. degree from ENST in 1990. He has authored more than 150 papers in applied probability, mathematical statistics and signal processing. Tobias Rydén is Professor of Mathematical Statistics at Lund University, Sweden, where he also received his Ph.D. in 1993. His publications include papers ranging from statistical theory to algorithmic developments for hidden Markov models. |
590 ## - NOTA LOCAL (RLIN) | |
Nota local | Para consulta fuera de la UANL se requiere clave de acceso remoto. |
700 1# - PUNTO DE ACCESO ADICIONAL--NOMBRE DE PERSONA | |
Nombre de persona | Moulines, Eric. |
Término indicativo de función/relación | autor |
9 (RLIN) | 302275 |
700 1# - PUNTO DE ACCESO ADICIONAL--NOMBRE DE PERSONA | |
Nombre de persona | Rydén, Tobias. |
Término indicativo de función/relación | autor |
9 (RLIN) | 302276 |
710 2# - PUNTO DE ACCESO ADICIONAL--NOMBRE DE ENTIDAD CORPORATIVA | |
Nombre de entidad corporativa o nombre de jurisdicción como elemento de entrada | SpringerLink (Servicio en línea) |
9 (RLIN) | 299170 |
776 08 - ENTRADA/ENLACE A UN FORMATO FÍSICO ADICIONAL | |
Información de relación/Frase instructiva de referencia | Edición impresa: |
Número Internacional Estándar del Libro | 9780387402642 |
856 40 - LOCALIZACIÓN Y ACCESO ELECTRÓNICOS | |
Identificador Uniforme del Recurso | <a href="http://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-28982-8">http://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-28982-8</a> |
Nota pública | Conectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 ## - ELEMENTOS DE PUNTO DE ACCESO ADICIONAL (KOHA) | |
Tipo de ítem Koha | Recurso en línea |
No hay ítems disponibles.