TEST - Catálogo BURRF
   

Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology / (Registro nro. 282330)

Detalles MARC
000 -CABECERA
campo de control de longitud fija 10947nam a22004335i 4500
001 - NÚMERO DE CONTROL
campo de control 282330
003 - IDENTIFICADOR DEL NÚMERO DE CONTROL
campo de control MX-SnUAN
005 - FECHA Y HORA DE LA ÚLTIMA TRANSACCIÓN
campo de control 20160429154144.0
007 - CAMPO FIJO DE DESCRIPCIÓN FÍSICA--INFORMACIÓN GENERAL
campo de control de longitud fija cr nn 008mamaa
008 - DATOS DE LONGITUD FIJA--INFORMACIÓN GENERAL
campo de control de longitud fija 150903s2006 ne | o |||| 0|eng d
020 ## - NÚMERO INTERNACIONAL ESTÁNDAR DEL LIBRO
Número Internacional Estándar del Libro 9781402042669
-- 9781402042669
024 7# - IDENTIFICADOR DE OTROS ESTÁNDARES
Número estándar o código 10.1007/1402042663
Fuente del número o código doi
035 ## - NÚMERO DE CONTROL DEL SISTEMA
Número de control de sistema vtls000334695
039 #9 - NIVEL DE CONTROL BIBLIOGRÁFICO Y DETALLES DE CODIFICACIÓN [OBSOLETO]
Nivel de reglas en descripción bibliográfica 201509030247
Nivel de esfuerzo utilizado para asignar no-encabezamientos de materia en puntos de acceso VLOAD
Nivel de esfuerzo utilizado en la asignación de encabezamientos de materia 201404120833
Nivel de esfuerzo utilizado para asignar clasificación VLOAD
Nivel de esfuerzo utilizado en la asignación de encabezamientos de materia 201404090612
Nivel de esfuerzo utilizado para asignar clasificación VLOAD
-- 201402041155
-- staff
040 ## - FUENTE DE LA CATALOGACIÓN
Centro catalogador/agencia de origen MX-SnUAN
Lengua de catalogación spa
Centro/agencia transcriptor MX-SnUAN
Normas de descripción rda
050 #4 - CLASIFICACIÓN DE LA BIBLIOTECA DEL CONGRESO
Número de clasificación QA641-670
100 1# - ENTRADA PRINCIPAL--NOMBRE DE PERSONA
Nombre de persona Biran, Paul.
Término indicativo de función/relación editor.
9 (RLIN) 308892
245 10 - MENCIÓN DE TÍTULO
Título Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology /
Mención de responsabilidad, etc. edited by Paul Biran, Octav Cornea, François Lalonde.
246 3# - FORMA VARIANTE DE TÍTULO
Título propio/Titulo breve Proceedings of the NATO Advanced Study Institute on Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, held in Montreal, Canada, from 21 June to 2 July 2004.
264 #1 - PRODUCCIÓN, PUBLICACIÓN, DISTRIBUCIÓN, FABRICACIÓN Y COPYRIGHT
Producción, publicación, distribución, fabricación y copyright Dordrecht :
Nombre del de productor, editor, distribuidor, fabricante Springer Netherlands,
Fecha de producción, publicación, distribución, fabricación o copyright 2006.
300 ## - DESCRIPCIÓN FÍSICA
Extensión xiv, 462 páginas
Otras características físicas recurso en línea.
336 ## - TIPO DE CONTENIDO
Término de tipo de contenido texto
Código de tipo de contenido txt
Fuente rdacontent
337 ## - TIPO DE MEDIO
Nombre/término del tipo de medio computadora
Código del tipo de medio c
Fuente rdamedia
338 ## - TIPO DE SOPORTE
Nombre/término del tipo de soporte recurso en línea
Código del tipo de soporte cr
Fuente rdacarrier
347 ## - CARACTERÍSTICAS DEL ARCHIVO DIGITAL
Tipo de archivo archivo de texto
Formato de codificación PDF
Fuente rda
490 0# - MENCIÓN DE SERIE
Mención de serie NATO Science Series II: Mathematics, Physics and Chemistry,
Número Internacional Normalizado para Publicaciones Seriadas 1568-2609 ;
Designación de volumen o secuencia 217
500 ## - NOTA GENERAL
Nota general Springer eBooks
505 0# - NOTA DE CONTENIDO CON FORMATO
Nota de contenido con formato Preface.Contributors. Lectures on the Morse Complex for Infinite-Dimensional Manifolds.-1.
505 0# - NOTA DE CONTENIDO CON FORMATO
Nota de contenido con formato A few facts from hyperbolic dynamics.-1.1 Adapted norms .-1.2 Linear stable and unstable spaces of an asymptotically hyperbolic path.-1.3 Morse vector fields -- 1.4 Local dynamics near a hyperbolic rest point ; 1.5 Local stable and unstable manifolds -- 1.6 The Grobman – Hartman linearization theorem.-1.7 Global stable and unstable manifolds -- 2 The Morse complex in the case of finite Morse indices -- 2.1 The Palais – Smale condition.-2.2 The Morse – Smale condition .-2.3 The assumptions -- 2.4 Forward compactness -- 2.5 Consequences of compactness and transversality -- 2.6 Cellular filtrations -- 2.7 The Morse complex -- 2.8 Representation of $\delta$* in terms of intersection numbers -- 2.9 How to remove the assumption (A8) -- 2.10 Morse functions on Hilbert manifolds.-2.11 Basic results in transversality theory -- 2.12 Genericity of the Morse – Smale condition.-2.13 Invariance of the Morse complex -- 3 The Morse complex in the case of infinite Morse indices -- 3.1 The program.-3.2 Fredholm pairs and compact perturbations of linear subspaces -- 3.3 Finite-dimensional intersections.-3.4 Essential subbundles -- 3.5 Orientations -- 3.6 Compactness -- 3.7 Two-dimensional intersections .-3.8 The Morse complex -- Bibliographical note -- Notes on Floer Homology and Loop Space Homology -- 1 Introduction -- 2 Main result.-2.1 Loop space homology.-2.2 Floer homology for the cotangent bundle -- 3 Ring structures and ring-homomorphisms.-3.1 The pair-of-pants product -- 3.2 The ring homomorphisms between free loop space Floer homology and based loop space Floer homology and classical homology.-4 Morse-homology on the loop spaces $\Lambda$Q and $\Omega$Q, and the isomorphism.-5 Products in Morse-homology .-5.1 Ring isomorphism between Morse homology and Floer homology -- Homotopical Dynamics in Symplectic Topology -- 1 Introduction .-2 Elements of Morse theory .-2.1 Connecting manifolds.-2.2 Operations.-3 Applications to symplectic topology -- 3.1 Bounded orbits .-3.2 Detection of pseudoholomorphic strips and Hofer’s norm -- Morse Theory, Graphs, and String Topology.-1 Graphs, Morse theory, and cohomology operations.-2 String topology .-3 A Morse theoretic view of string topology -- 4 Cylindrical holomorphic curves in the cotangent bundle -- Topology of Robot Motion Planning.-1.Introduction .-2 First examples of configuration spaces .-3 Varieties of polygonal linkages.-3.1 Short and long subsets .-3.2 Poincaré polynomial of M(a) .-4 Universality theorems for configuration spaces .-5 A remark about configuration spaces in robotics .-6 The motion planning problem.-7 Tame motion planning algorithms.-8 The Schwarz genus -- 9 The second notion of topological complexity.-10 Homotopy invariance -- 11 Order of instability of a motion planning algorithm.-12 Random motion planning algorithms -- 13 Equality theorem.-14 An upper bound for TC(X).-15 A cohomological lower bound for TC(X) .-16 Examples .-17 Simultaneous control of many systems.-18 Another inequality relating TC(X) to the usual category .-19 Topological complexity of bouquets.-20 A general recipe to construct a motion planning algorithm.-21 How difficult is to avoid collisions in $\mathbb{R}$m? .-22 The case m = 2 -- 23 TC(F($\mathbb{R}$m; n) in the case m $\geq$ 3 odd -- 24 Shade.-25 Illuminating the complement of the braid arrangement .-26 A quadratic motion planning algorithm in F($\mathbb{R}$m; n).-27 Configuration spaces of graphs.-28 Motion planning in projective spaces .-29 Nonsingular maps -- 30 TC(($\mathbb{R}$Pn) and the immersion problem.-31 Some open problems -- Application of Floer Homology of Langrangian Submanifolds to Symplectic Topology -- 1 Introduction -- 2 Lagrangian submanifold of $\mathbb{C}$n .-3 Perturbing Cauchy – Riemann equation -- 4 Maslov index of Lagrangian submanifold with vanishing second Betti number.-5 Floer homology and a spectral sequence .-6 Homology of loop space and Chas – Sullivan bracket .-7 Iterated integral and Gerstenhaber bracket -- 8 A$_\infty$ deformation of de Rham complex -- 9 S1 equivariant homology of loop space and cyclic A1 algebra .-10 L$_\infty$ structure on H(S1 $\times$ Sn; $\mathbb{Q}$).-11 Lagrangian submanifolds of $\mathbb{C}$3 .-12 Aspherical Lagrangian submanifolds .-13 Lagrangian submanifolds homotopy equivalent to S1 $\times$ S2m .-14 Lagrangian submanifolds of $\mathbb{C}$Pn -- The $\mathcal{LS}$-Index: A Survey -- 1 Introduction .-2 The $\mathcal{LS}$-index.-2.1 Basic definitions and facts.-2.2 Spectra .-2.3 The $\mathcal{LS}$-index -- 3 Cohomology of spectra .-4 Attractors, repellers and Morse decompositions -- 5 Equivariant $\mathcal{LS}$-flows and the G-$\mathcal{LS}$-index.-5.1 Symmetries.-5.2 Isolating neighbourhoods and the equivariant $\mathcal{LS}$-index .-6 Applications.-6.1 A general setting .-6.2 Applications of the $\mathcal{LS}$-index .-6.3 Applications of the cohomological $\mathcal{LS}$-index .-6.4 Applications of the equivariant LS-index -- Lectures on Floer Theory and Spectral Invariants of Hamiltonian Flows -- 1 Introduction .-2 The free loop space and the action functional.-2.1 The free loop space and the S1-action in general.-2.2 The free loop space of symplectic manifolds.-2.3 The Novikov covering.-2.4 Perturbed action functionals and their action spectra.-2.5 The L2-gradient flow and perturbed Cauchy – Riemann equations.-2.6 Comparison of two Cauchy – Riemann equations.-3 Floer complex and the Novikov ring.-3.1 Novikov – Floer chains and the Novikov ring.-3.2 Definition of the Floer boundary map.-3.3 Definition of the Floer chain map.-3.4 Semi-positivity and transversality.-3.5 Composition law of Floer’s chain maps.-4 Energy estimates and Hofer’s geometry -- 4.1 Energy estimates and the action level changes.-4.2 Energy estimates and Hofer’s norm.-4.3 Level changes of Floer chains under the homotopy .-4.4 The $\epsilon$-regularity type invariants .-5 Definition of spectral invariants and their axioms.-5.1 Floer complex of a small Morse function.-5.2 Definition of spectral invariants.-5.3 Axioms of spectral invariants.-6 The spectrality axiom.-6.1 A consequence of the nondegenerate spectrality axiom.-6.2 Spectrality axiom for the rational case.-6.3 Spectrality for the irrational case.-7 Pants product and the triangle inequality.-7.1 Quantum cohomology in the chain level.-7.2 Grading convention.-7.3 Hamiltonian fibrations and the pants product -- 7.4 Proof of the triangle inequality.-8 Spectral norm of Hamiltonian diffeomorphisms.-8.1 Construction of the spectral norm.-8.2 The $\epsilon$-regularity theorem and its consequences.-8.3 Proof of nondegeneracy.-9 Applications to Hofer geometry of Ham(M;$\omega$).-9.1 Quasi-autonomous Hamiltonians and the minimality conjecture -- 9.2 Length minimizing criterion via $\rho$(H; 1).-9.3 Canonical fundamental Floer cycles.-9.4 The case of autonomous Hamiltonians.-10 Remarks on the transversality for general (M;$omega$) -- A Proof of the index formula -- Floer Homology, Dynamics and Groups.-1 Hamiltonian actions of finitely generated groups.-1.1 The group of Hamiltonian diffeomorphisms.-1.2 The no-torsion theorem.-1.3 Distortion in normed groups .-1.4 The No-Distortion Theorem.-1.5 The Zimmer program -- 2 Floer theory in action.-2.1 A brief sketch of Floer theory .-2.2 Width and torsion.-2.3 A geometry on Ham(M;$\omega$).-2.4 Width and distortion.-2.5 More remarks on the Zimmer program.-3 The Calabi quasi-morphism and related topics.-3.1 Extending the Calabi homomorphism.-3.2 Introducing quasi-morphisms.-3.3 Quasi-morphisms on
505 0# - NOTA DE CONTENIDO CON FORMATO
Nota de contenido con formato Ham(M;$\omega$).-3.4 Distortion in Hofer’s norm on Ham(M;$\omega$) -- 3.5 Existence and uniqueness of Calabi quasi-morphisms.-3.6 "Hyperbolic" features of Ham(M;$\omega$)? .-3.7 From $\pi$1(M) to Diff0(M;$\Omega$) -- Symplectic topology and Hamilton – Jacobi equations -- 1 Introduction to symplectic geometry and generating functions.-1.1 Uniqueness and first symplectic invariants.-2 The calculus of critical level sets.-2.1 The case of GFQI.-2.2 Applications.-3 Hamilton – Jacobi equations and generating functions.-4 Coupled Hamilton – Jacobi equations.-Index.
520 ## - SUMARIO, ETC.
Sumario, etc. This volume contains contributions to the Séminaire de Mathématiques Supérieures – NATO Advanced Study Institute on "Morse theoretic Methods in non-linear Analysis and Symplectic Topology" which was held at the Université de Montréal in the summer of 2004. The recent years have witnessed the emergence of a deeper and more general formalism of the main geometric ideas in these fields. The surveys and research papers in this volume are a striking example of this trend. They provide an up-to-date overview of some of the most significant advances in these topics. The text is of high relevance for graduate students as well as for more senior mathematicians with interest in a wide range of topics going from symplectic topology to dynamical systems and from algebraic and differential topology to variational methods.
590 ## - NOTA LOCAL (RLIN)
Nota local Para consulta fuera de la UANL se requiere clave de acceso remoto.
700 1# - PUNTO DE ACCESO ADICIONAL--NOMBRE DE PERSONA
Nombre de persona Cornea, Octav.
Término indicativo de función/relación editor.
9 (RLIN) 308893
700 1# - PUNTO DE ACCESO ADICIONAL--NOMBRE DE PERSONA
Nombre de persona Lalonde, François.
Término indicativo de función/relación editor.
9 (RLIN) 308894
710 2# - PUNTO DE ACCESO ADICIONAL--NOMBRE DE ENTIDAD CORPORATIVA
Nombre de entidad corporativa o nombre de jurisdicción como elemento de entrada SpringerLink (Servicio en línea)
9 (RLIN) 299170
776 08 - ENTRADA/ENLACE A UN FORMATO FÍSICO ADICIONAL
Información de relación/Frase instructiva de referencia Edición impresa:
Número Internacional Estándar del Libro 9781402042720
856 40 - LOCALIZACIÓN Y ACCESO ELECTRÓNICOS
Identificador Uniforme del Recurso <a href="http://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-4020-4266-3">http://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-4020-4266-3</a>
Nota pública Conectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 ## - ELEMENTOS DE PUNTO DE ACCESO ADICIONAL (KOHA)
Tipo de ítem Koha Recurso en línea

No hay ítems disponibles.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha