TEST - Catálogo BURRF
   

Vibrations of Elastic Systems : (Registro nro. 312273)

Detalles MARC
000 -CABECERA
campo de control de longitud fija 11308nam a22003855i 4500
001 - NÚMERO DE CONTROL
campo de control 312273
003 - IDENTIFICADOR DEL NÚMERO DE CONTROL
campo de control MX-SnUAN
005 - FECHA Y HORA DE LA ÚLTIMA TRANSACCIÓN
campo de control 20170705134326.0
007 - CAMPO FIJO DE DESCRIPCIÓN FÍSICA--INFORMACIÓN GENERAL
campo de control de longitud fija cr nn 008mamaa
008 - DATOS DE LONGITUD FIJA--INFORMACIÓN GENERAL
campo de control de longitud fija 150903s2012 ne | o |||| 0|eng d
020 ## - NÚMERO INTERNACIONAL ESTÁNDAR DEL LIBRO
Número Internacional Estándar del Libro 9789400726727
-- 9789400726727
024 7# - IDENTIFICADOR DE OTROS ESTÁNDARES
Número estándar o código 10.1007/9789400726727
Fuente del número o código doi
035 ## - NÚMERO DE CONTROL DEL SISTEMA
Número de control de sistema vtls000366929
039 #9 - NIVEL DE CONTROL BIBLIOGRÁFICO Y DETALLES DE CODIFICACIÓN [OBSOLETO]
Nivel de reglas en descripción bibliográfica 201509030707
Nivel de esfuerzo utilizado para asignar no-encabezamientos de materia en puntos de acceso VLOAD
Nivel de esfuerzo utilizado en la asignación de encabezamientos de materia 201405070434
Nivel de esfuerzo utilizado para asignar clasificación VLOAD
-- 201402251349
-- staff
040 ## - FUENTE DE LA CATALOGACIÓN
Centro catalogador/agencia de origen MX-SnUAN
Lengua de catalogación spa
Centro/agencia transcriptor MX-SnUAN
Normas de descripción rda
050 #4 - CLASIFICACIÓN DE LA BIBLIOTECA DEL CONGRESO
Número de clasificación TA355
100 1# - ENTRADA PRINCIPAL--NOMBRE DE PERSONA
Nombre de persona Magrab, Edward B.
Término indicativo de función/relación autor
9 (RLIN) 181450
245 10 - MENCIÓN DE TÍTULO
Título Vibrations of Elastic Systems :
Resto del título With Applications to MEMS and NEMS /
Mención de responsabilidad, etc. by Edward B. Magrab.
264 #1 - PRODUCCIÓN, PUBLICACIÓN, DISTRIBUCIÓN, FABRICACIÓN Y COPYRIGHT
Producción, publicación, distribución, fabricación y copyright Dordrecht :
Nombre del de productor, editor, distribuidor, fabricante Springer Netherlands :
-- Imprint: Springer,
Fecha de producción, publicación, distribución, fabricación o copyright 2012.
300 ## - DESCRIPCIÓN FÍSICA
Extensión xvI, 489 páginas 157 ilustraciones
Otras características físicas recurso en línea.
336 ## - TIPO DE CONTENIDO
Término de tipo de contenido texto
Código de tipo de contenido txt
Fuente rdacontent
337 ## - TIPO DE MEDIO
Nombre/término del tipo de medio computadora
Código del tipo de medio c
Fuente rdamedia
338 ## - TIPO DE SOPORTE
Nombre/término del tipo de soporte recurso en línea
Código del tipo de soporte cr
Fuente rdacarrier
347 ## - CARACTERÍSTICAS DEL ARCHIVO DIGITAL
Tipo de archivo archivo de texto
Formato de codificación PDF
Fuente rda
490 0# - MENCIÓN DE SERIE
Mención de serie Solid Mechanics and Its Applications,
Número Internacional Normalizado para Publicaciones Seriadas 0925-0042 ;
Designación de volumen o secuencia 184
500 ## - NOTA GENERAL
Nota general Springer eBooks
505 0# - NOTA DE CONTENIDO CON FORMATO
Nota de contenido con formato 1 Introduction --  1.1 A Brief Historical Perspective --  1.2 Importance of Vibrations --  1.3 Analysis of Vibrating Systems --  1.4 About the Book --  2 Spring-Mass Systems --  2.1 Introduction --  2.2 Some Preliminaries --  2.2.1 A Brief Review of Single Degree-of-Freedom Systems --  2.2.2 General Solution: Harmonically Varying Forcing --  2.2.3 Power Dissipated by a Viscous Damper --  2.2.4 Structural Damping --  2.3 Squeeze Film Air Damping --  2.3.1 Introduction --  2.3.2 Rectangular Plates --  2.3.3 Circular Plates --  2.3.4 Base Excitation with Squeeze Film Damping --  2.3.5 Time-Varying Force Excitation of the Mass --  2.4 Viscous Fluid Damping --  2.4.1 Introduction --  2.4.2 Single Degree-of-Freedom System in a Viscous Fluid --  2.5 Electrostatic and van der Waals Attraction --  2.5.1 Introduction --  2.5.2 Single Degree-of-Freedom with Electrostatic Attraction --  2.5.3 van der Waals Attraction and Atomic Force Microscopy --  2.6 Energy Harvesters --  2.6.1 Introduction --  2.6.2 Piezoelectric Generator --  2.6.3 Maximum Average Power of a Piezoelectric Generator --  2.6.4 Permanent Magnet Generator --  2.6.5 Maximum Average Power of a Permanent Magnet Generator --  2.7 Two Degree-of-Freedom Systems --  2.7.1 Introduction --  2.7.2 Harmonic Excitation: Natural Frequencies and Frequency Response Functions --  2.7.3 Enhanced Energy Harvester --  2.7.4 MEMS Filters --  2.7.5 Time-Domain Response --  2.7.6 Design of an Atomic Force Microscope Motion Scanner --  Appendix 2.1 Forces on a Submerged Vibrating Cylinder --  3 Thin Beams: Part I --  3.1 Introduction --  3.2 Derivation of Governing Equation and Boundary Conditions --  3.2.1 Contributions to the Total Energy --  3.2.2 Governing Equation --  3.2.3 Boundary Conditions --  3.2.4 Non Dimensional Form of the Governing Equation and Boundary Conditions --  3.3 Natural Frequencies and Mode Shapes of Beams with Constant Cross Section and with Attachments --  3.3.1 Introduction --  3.3.2 Solution for Very General Boundary Conditions --  3.3.3 General Solution in the Absence of an Axial Force and an Elastic Foundation --  3.3.4 Numerical Results --  3.3.5 Cantilever Beam as a Biosensor --  3.4 Single Degree-of-Freedom Approximation of Beams with a Concentrated Mass --  3.5 Beams with In-Span Spring-Mass Systems --  3.5.1 Single Degree-of-Freedom System --  3.5.2 Two Degree-of-Freedom System with Translation and Rotation --  3.6 Effects of an Axial Force and an Elastic Foundation on the Natural Frequency --  3.7 Beams with a Rigid Extended Mass --  3.7.1 Introduction --  3.7.2 Cantilever Beam with a Rigid Extended Mass --  3.7.3 Beam with an In-span Rigid Extended Mass --  3.8 Beams with Variable Cross Section --  3.8.1 Introduction --  3.8.2 Continuously Changing Cross Section --  3.8.3 Linear Taper --  3.8.4 Exponential Taper --  3.8.5 Approximate Solution to Tapered Beams: Rayleigh-Ritz Method --  3.8.6 Triangular Taper: Application to Atomic Force Microscopy --  3.8.7 Constant Cross Section with a Step Change in Properties --  3.8.8 Stepped Beam with an In-Span Rigid Support --  3.9 Elastically Connected Beams --  3.9.1 Introduction --  3.9.2 Beams Connected by a Continuous Elastic Spring --  3.9.3 Beams with Concentrated Masses Connected by an Elastic Spring --  3.10 Forced Excitation --  3.10.1 Boundary Conditions and the Generation of Orthogonal Functions --  3.10.2 General Solution --  3.10.3 Impulse Response --  3.10.4 Time-Dependent Boundary Excitation --  3.10.5 Forced Harmonic Oscillations --  3.10.6 Harmonic Boundary Excitation --  4 Thin Beams: Part II --  4.1 Introduction --  4.2 Damping --  4.2.1 Generation of Governing Equation --  4.2.2 General Solution --  4.2.3 Illustration of the Effects of Various Types of Damping: Cantilever Beam --  4.3 In-plane Forces and Electrostatic Attraction --  4.3.1 Introduction --  4.3.2 Beam Subjected to a Constant Axial Force --  4.3.3 Beam Subject to In-plane Forces and Electrostatic Attraction --  4.4 Piezoelectric Energy Harvesters --  4.4.1 Governing Equations and Boundary Conditions --  4.4.2 Power from the Harmonic Oscillations of a Base-Excited Cantilever Beam --  Appendix 4.1 Hydrodynamic Correction Function --  5 Timoshenko Beams --  5.1 Introduction --  5.2 Derivation of the Governing Equations and Boundary Conditions --  5.2.1 Introduction --  5.2.2 Contributions to the Total Energy --  5.2.3 Governing Equations --  5.2.4 Boundary Conditions --   5.2.5 Non Dimensional Form of the Governing Equations and Boundary Conditions --  5.2.6 Reduction of Timoshenko Equations to That of Euler-Bernoulli --  5.3 Natural Frequencies and Mode Shapes of Beams with Constant Cross Section, Elastic Foundation, Axial Force and In-span Attachments --  5.3.1 Introduction --  5.3.2 Solution for Very General Boundary Conditions --  5.3.3 Special Cases --  5.3.4 Numerical Results --  5.4 Natural Frequencies of Beams with Variable Cross Section --  5.4.1 Beams with a Continuous Taper: Rayleigh-Ritz Method --  5.4.2 Constant Cross Section with a Step Change in Properties --  5.4.3 Numerical Results --  5.5 Beams Connected by a Continuous Elastic Spring --  5.6 Forced Excitation --  5.6.1 Boundary Conditions and the Generation of Orthogonal Functions --  5.6.2 General Solution --  5.6.3 Impulse Response --  Appendix 5.1 Definitions of the Solution Functions fl and gl and Their Derivatives --   Appendix 5.2 Definitions of the Solution Functions fli and gli and Their Derivatives --   6 Thin Plates --  6.1 Introduction --  6.2 Derivation of Governing Equation and Boundary Conditions: Rectangular Plates --  6.2.1 Introduction --  6.2.2 Contributions to the Total Energy --  6.2.3 Governing Equation --  6.2.4 Boundary Conditions --  6.2.5 Non Dimensional Form of the Governing Equation and Boundary Conditions --  6.3 Governing Equations and Boundary Conditions: Circular Plates --  6.4 Natural Frequencies and Mode Shapes of Circular Plates for Very General Boundary Conditions --  6.4.1 Introduction --  6.4.2 Natural Frequencies and Mode Shapes of Annular and Solid Circular Plates --  6.4.3 Numerical Results --  6.5 Natural Frequencies and Mode Shapes of Rectangular and Square Plates: Rayleigh-Ritz Method --  6.5.1 Introduction --  6.5.2 Natural Frequencies and Mode Shapes of Rectangular and Square Plates --  6.5.3 Numerical Results --  6.5.4 Comparison with Thin Beams --  6.6 Forced Excitation of Circular Plates --  6.6.1 General Solution to the Forced Excitation of Circular Plates --  6.6.2 Impulse Response of a Solid Circular Plate --  6.7 Circular Plate with Concentrated Mass Revisited --  6.8 Extensional Vibrations of Plates --  6.8.1 Introduction --  6.8.2 Contributions to the Total Energy --  6.8.3 Governing Equations and Boundary Conditions --  6.8.4 Natural Frequencies and Mode Shapes of a Circular Plate --  6.8.5 Numerical Results --  Appendix 6.1 Elements of Matrices in Eq.
505 0# - NOTA DE CONTENIDO CON FORMATO
Nota de contenido con formato (6.100) --  7 Cylindrical Shells and Carbon Nanotube Approximations --  7.1 Introduction --  7.2 Derivation of Governing Equations and Boundary Conditions: Flügge’s Theory --  7.2.1 Introduction --  7.2.2 Contributions to the Total Energy --  7.2.3 Governing Equations --  7.2.4 Boundary Conditions --  7.2.5 Boundary Conditions and the Generation of Orthogonal Functions --   7.3 Derivation of Governing Equations and Boundary Conditions: Donnell’s Theory --  7.3.1 Introduction --  7.3.2 Contributions to the Total Energy --  7.3.3 Governing Equations 7.3.4 Boundary Conditions --  7.4 Natural Frequencies of Clamped and Cantilever Shells: Single-Wall Carbon Nanotube Approximations --  7.4.1 Rayleigh-Ritz Solution --  7.4.2 Numerical Results --  7.5 Natural Frequencies of Hinged Shells: Double-Wall Carbon Nanotube Approximation --  Appendix A Strain Energy in Linear Elastic Bodies --  Appendix B Variational Calculus: Generation of Governing Equations, Boundary Conditions, and Orthogonal Functions --  B.1 Variational Calculus --  B.1.1 System with One Dependent Variable --  B.1.2 A Special Case for Systems with One Dependent Variable --  B.1.3 Systems with N Dependent Variables --  B.1.4 A Special Case for Systems with N Dependent Variables --  B.2 Orthogonal Functions --  B.2.1 Systems with One Dependent Variable --  B.2.2 Systems with N Dependent Variables --  B.3 Application of Results to Specific Elastic Systems --  Appendix C Laplace Transforms and the Solutions to Ordinary Differential Equations --   C.1 Definition of the Laplace Transform --  C.2 Solution to Second-Order Equation --  C.3 Solution to Fourth-Order Equation --   C.4 Table of Laplace Transform Pairs.
520 ## - SUMARIO, ETC.
Sumario, etc. This work presents a unified approach to the vibrations of elastic systems as applied to MEMS devices, mechanical components, and civil structures. Applications include atomic force microscopes, energy harvesters, and carbon nanotubes and consider such complicating effects as squeeze film damping, viscous fluid loading, in-plane forces, and proof mass interactions with their elastic supports. These effects are analyzed as single degree-of-freedom models and as more realistic elastic structures. The governing equations and boundary conditions for beams, plates, and shells with interior and boundary attachments are derived by applying variational calculus to an expression describing the energy of the system. The advantages of this approach regarding the generation of orthogonal functions and the Rayleigh-Ritz method are demonstrated. A large number of graphs and tables are given to show the impact of various factors on the systems’ natural frequencies, mode shapes, and responses.
590 ## - NOTA LOCAL (RLIN)
Nota local Para consulta fuera de la UANL se requiere clave de acceso remoto.
710 2# - PUNTO DE ACCESO ADICIONAL--NOMBRE DE ENTIDAD CORPORATIVA
Nombre de entidad corporativa o nombre de jurisdicción como elemento de entrada SpringerLink (Servicio en línea)
9 (RLIN) 299170
776 08 - ENTRADA/ENLACE A UN FORMATO FÍSICO ADICIONAL
Información de relación/Frase instructiva de referencia Edición impresa:
Número Internacional Estándar del Libro 9789400726710
856 40 - LOCALIZACIÓN Y ACCESO ELECTRÓNICOS
Identificador Uniforme del Recurso <a href="http://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-94-007-2672-7">http://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-94-007-2672-7</a>
Nota pública Conectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 ## - ELEMENTOS DE PUNTO DE ACCESO ADICIONAL (KOHA)
Tipo de ítem Koha Recurso en línea

No hay ítems disponibles.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha