TEST - Catálogo BURRF
   

Riemannian Geometry / by Peter Petersen.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Graduate Texts in Mathematics ; 171Editor: New York, NY : Springer New York, 2006Edición: Second EditionDescripción: xvI, 408 páginas, 59 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780387294032
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA641-670
Recursos en línea:
Contenidos:
Riemannian Metrics -- Curvature -- Examples -- Hypersurfaces -- Geodesics and Distance -- Sectional Curvature Comparison I -- The Bochner Technique -- Symmetric Spaces and Holonomy -- Ricci Curvature Comparison -- Convergence -- Sectional Curvature Comparison II.
Resumen: Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory, while also presenting the most up-to-date research. This book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stokes theorem. Various exercises are scattered throughout the text, helping motivate readers to deepen their understanding of the subject. Important additions to this new edition include: * A completely new coordinate free formula that is easily remembered, and is, in fact, the Koszul formula in disguise; * An increased number of coordinate calculations of connection and curvature; * General fomulas for curvature on Lie Groups and submersions; * Variational calculus has been integrated into the text, which allows for an early treatment of the Sphere theorem using a forgottten proof by Berger; * Several recent results about manifolds with positive curvature. From reviews of the first edition: "The book can be highly recommended to all mathematicians who want to get a more profound idea about the most interesting achievements in Riemannian geometry. It is one of the few comprehensive sources of this type." - Bernd Wegner, Zentralblatt
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Riemannian Metrics -- Curvature -- Examples -- Hypersurfaces -- Geodesics and Distance -- Sectional Curvature Comparison I -- The Bochner Technique -- Symmetric Spaces and Holonomy -- Ricci Curvature Comparison -- Convergence -- Sectional Curvature Comparison II.

Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory, while also presenting the most up-to-date research. This book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stokes theorem. Various exercises are scattered throughout the text, helping motivate readers to deepen their understanding of the subject. Important additions to this new edition include: * A completely new coordinate free formula that is easily remembered, and is, in fact, the Koszul formula in disguise; * An increased number of coordinate calculations of connection and curvature; * General fomulas for curvature on Lie Groups and submersions; * Variational calculus has been integrated into the text, which allows for an early treatment of the Sphere theorem using a forgottten proof by Berger; * Several recent results about manifolds with positive curvature. From reviews of the first edition: "The book can be highly recommended to all mathematicians who want to get a more profound idea about the most interesting achievements in Riemannian geometry. It is one of the few comprehensive sources of this type." - Bernd Wegner, Zentralblatt

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha