TEST - Catálogo BURRF
   

Critical Point Theory and Its Applications / by Wenming Zou, Martin Schechter.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Boston, MA : Springer US, 2006Descripción: xii, 318 páginas, recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780387329680
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA614-614.97
Recursos en línea:
Contenidos:
Preliminaries -- Functionals Bounded Below -- Even Functionals -- Linking and Homoclinic Type Solutions -- Double Linking Theorems -- Superlinear Problems -- Systems with Hamiltonian Potentials -- Linking and Elliptic Systems -- Sign-Changing Solutions -- Cohomology Groups.
Resumen: Since the birth of the calculus of variations, researchers have discovered that variational methods, when they apply, can obtain better results than most other methods. Moreover, they apply in a very large number of situations. It was realized many years ago that the solutions of a great number of problems are in effect critical points of functionals. Critical Point Theory and Its Applications presents some of the latest research in the area of critical point theory. Researchers have obtained many new results recently using this approach, and in most cases comparable results have not been obtained with other methods. This book describes the methods and presents the newest applications. The topics covered in the book include extrema, even valued functionals, weak and double linking, sign changing solutions, Morse inequalities, and cohomology groups. The applications described include Hamiltonian systems, Schrödinger equations and systems, jumping nonlinearities, elliptic equations and systems, superlinear problems and beam equations. Many minimax theorems are established without the use of the (PS) compactness condition. Audience This book is intended for advanced graduate students and researchers in mathematics studying the calculus of variations, differential equations and topological methods.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preliminaries -- Functionals Bounded Below -- Even Functionals -- Linking and Homoclinic Type Solutions -- Double Linking Theorems -- Superlinear Problems -- Systems with Hamiltonian Potentials -- Linking and Elliptic Systems -- Sign-Changing Solutions -- Cohomology Groups.

Since the birth of the calculus of variations, researchers have discovered that variational methods, when they apply, can obtain better results than most other methods. Moreover, they apply in a very large number of situations. It was realized many years ago that the solutions of a great number of problems are in effect critical points of functionals. Critical Point Theory and Its Applications presents some of the latest research in the area of critical point theory. Researchers have obtained many new results recently using this approach, and in most cases comparable results have not been obtained with other methods. This book describes the methods and presents the newest applications. The topics covered in the book include extrema, even valued functionals, weak and double linking, sign changing solutions, Morse inequalities, and cohomology groups. The applications described include Hamiltonian systems, Schrödinger equations and systems, jumping nonlinearities, elliptic equations and systems, superlinear problems and beam equations. Many minimax theorems are established without the use of the (PS) compactness condition. Audience This book is intended for advanced graduate students and researchers in mathematics studying the calculus of variations, differential equations and topological methods.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha