TEST - Catálogo BURRF
   

Discovering Biomolecular Mechanisms with Computational Biology / by Frank Eisenhaber.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Molecular Biology Intelligence UnitEditor: Boston, MA : Springer US, 2006Descripción: xI, 147 páginas, 42 ilustraciones, 1 ilustraciones en color. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780387367477
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • R-RZ
Recursos en línea:
Contenidos:
Prediction of Post-translational modifications from amino acid sequence: Problems, pitfalls, methodological hints -- Deriving Biological Function of Genome Information with Biomolecular Sequence and Structure Analysis -- Reliable and Specific Protein Function Prediction by Combining Homology with Genomic(s) Context -- Clues from Three-Dimensional Structure Analysis and Molecular Modelling -- Prediction of Protein Function -- Complementing Biomolecular Sequence Analysis with Text Mining in Scientific Articles -- Extracting Information for Meaningful Function Inference through Text-Mining -- Literature and Genome Data Mining for Prioritizing Disease-Associated Genes -- Mechanistic Predictions from the Analysis of Biomolecular Networks -- Model-Based Inference of Transcriptional Regulatory Mechanisms from DNA Microarray Data -- The Predictive Power of Molecular Network Modelling -- Mechanistic Predictions from the Analysis of Biomolecular Sequence Populations: Considering Evolution for Function Prediction -- Theory of Early Molecular Evolution -- Hitchhiking Mapping -- Understanding the Functional Importance of Human Single Nucleotide Polymorphisms -- Correlations between Quantitative Measures of Genome Evolution, Expression and Function.
Resumen: In this anthology, leading researchers present critical reviews of methods and high-impact applications in computational biology that lead to results that also non-bioinformaticians must know to design efficient experimental research plans. Discovering Biomolecular Mechanisms with Computational Biology also summarizes non-trivial theoretical predictions for regulatory and metabolic networks that have received experimental confirmation. Discovering Biomolecular Mechanisms with Computational Biology is essential reading for life science researchers and higher-level students that work on biomolecular mechanisms and wish to understand the impact of computational biology for their success.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Prediction of Post-translational modifications from amino acid sequence: Problems, pitfalls, methodological hints -- Deriving Biological Function of Genome Information with Biomolecular Sequence and Structure Analysis -- Reliable and Specific Protein Function Prediction by Combining Homology with Genomic(s) Context -- Clues from Three-Dimensional Structure Analysis and Molecular Modelling -- Prediction of Protein Function -- Complementing Biomolecular Sequence Analysis with Text Mining in Scientific Articles -- Extracting Information for Meaningful Function Inference through Text-Mining -- Literature and Genome Data Mining for Prioritizing Disease-Associated Genes -- Mechanistic Predictions from the Analysis of Biomolecular Networks -- Model-Based Inference of Transcriptional Regulatory Mechanisms from DNA Microarray Data -- The Predictive Power of Molecular Network Modelling -- Mechanistic Predictions from the Analysis of Biomolecular Sequence Populations: Considering Evolution for Function Prediction -- Theory of Early Molecular Evolution -- Hitchhiking Mapping -- Understanding the Functional Importance of Human Single Nucleotide Polymorphisms -- Correlations between Quantitative Measures of Genome Evolution, Expression and Function.

In this anthology, leading researchers present critical reviews of methods and high-impact applications in computational biology that lead to results that also non-bioinformaticians must know to design efficient experimental research plans. Discovering Biomolecular Mechanisms with Computational Biology also summarizes non-trivial theoretical predictions for regulatory and metabolic networks that have received experimental confirmation. Discovering Biomolecular Mechanisms with Computational Biology is essential reading for life science researchers and higher-level students that work on biomolecular mechanisms and wish to understand the impact of computational biology for their success.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha