TEST - Catálogo BURRF
   

Radiative Decay Engineering / edited by Chris D. Geddes, Joseph R. Lakowicz.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Topics in Fluorescence Spectroscopy ; 8Editor: Boston, MA : Springer US, 2005Descripción: XVIII, 457 páginas, 295 illus. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780387276175
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QD71-142
Recursos en línea:
Contenidos:
Preparation of Noble Metal Colloids and Selected Structures -- Near-Field Scanning Optical Microscopy: Alternative Modes of Use for NSOM Probes -- Nanoparticles with Tunable Localized Surface Plasmon Resonances -- Colloid Surface Chemistry -- Bioanalytical Sensing Using Noble Metal Colloids -- Theory of Fluorophore-Metallic Surface Interactions -- Surface-Enhancement of Fluorescence Near Noble Metal Nanostructures -- Time Resolved Fluorescence Measurements of Fluorophores Close to Metal Nanoparticles -- Copper-Coated Self-Assembled Monolayers: Alkanethiols and Prospective Molecular Wires -- Principles and Applications of Surface-Plasmon Field-Enhanced Fluorescence Techniques -- Optically Detectable Colloidal Metal Labels: Properties, Methods, and Biomedical Applications -- Noble Metal Nanoparticle Biosensors -- Surface Plasmon-Coupled Emission: A New Method for Sensitive Fluorescence Detection -- Radiative Decay Engineering (RDE).
Resumen: During recent years our enthusiasm for Radiative Decay Engineering (RDE) has continually increased. Many of the early predictions have been confirmed experimentally. We see numerous applications for RDE in biotechnology, clinical assays and analytical chemistry. While implementation of RDE is relatively simple, understanding the principles of RDE is difficult. The concepts are widely distributed in the optics and chemical physics literature, often described in terms difficult to understand by biophysical scientists. RDE includes chapters from the experts who have studied metal particle optics and fluorophore-metal interactions. This collection describes the fundamental principles for the widespread use of radiative decay engineering in the biological sciences and nanotechnology.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preparation of Noble Metal Colloids and Selected Structures -- Near-Field Scanning Optical Microscopy: Alternative Modes of Use for NSOM Probes -- Nanoparticles with Tunable Localized Surface Plasmon Resonances -- Colloid Surface Chemistry -- Bioanalytical Sensing Using Noble Metal Colloids -- Theory of Fluorophore-Metallic Surface Interactions -- Surface-Enhancement of Fluorescence Near Noble Metal Nanostructures -- Time Resolved Fluorescence Measurements of Fluorophores Close to Metal Nanoparticles -- Copper-Coated Self-Assembled Monolayers: Alkanethiols and Prospective Molecular Wires -- Principles and Applications of Surface-Plasmon Field-Enhanced Fluorescence Techniques -- Optically Detectable Colloidal Metal Labels: Properties, Methods, and Biomedical Applications -- Noble Metal Nanoparticle Biosensors -- Surface Plasmon-Coupled Emission: A New Method for Sensitive Fluorescence Detection -- Radiative Decay Engineering (RDE).

During recent years our enthusiasm for Radiative Decay Engineering (RDE) has continually increased. Many of the early predictions have been confirmed experimentally. We see numerous applications for RDE in biotechnology, clinical assays and analytical chemistry. While implementation of RDE is relatively simple, understanding the principles of RDE is difficult. The concepts are widely distributed in the optics and chemical physics literature, often described in terms difficult to understand by biophysical scientists. RDE includes chapters from the experts who have studied metal particle optics and fluorophore-metal interactions. This collection describes the fundamental principles for the widespread use of radiative decay engineering in the biological sciences and nanotechnology.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha