TEST - Catálogo BURRF
   

Compact Lie Groups / edited by Mark R. Sepanski.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Graduate Texts in Mathematics ; 235Editor: New York, NY : Springer New York, 2007Descripción: xii, 198 páginas, recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780387491585
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA252.3
Recursos en línea:
Contenidos:
Compact Lie Groups -- Representations -- HarmoniC Analysis -- Lie Algebras -- Abelian Lie Subgroups and Structure -- Roots and Associated Structures -- Highest Weight Theory.
Resumen: Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Included is the construction of the Spin groups, Schur Orthogonality, the Peter–Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel–Weil Theorem. The necessary Lie algebra theory is also developed in the text with a streamlined approach focusing on linear Lie groups. Key Features: • Provides an approach that minimizes advanced prerequisites • Self-contained and systematic exposition requiring no previous exposure to Lie theory • Advances quickly to the Peter–Weyl Theorem and its corresponding Fourier theory • Streamlined Lie algebra discussion reduces the differential geometry prerequisite and allows a more rapid transition to the classification and construction of representations • Exercises sprinkled throughout This beginning graduate-level text, aimed primarily at Lie Groups courses and related topics, assumes familiarity with elementary concepts from group theory, analysis, and manifold theory. Students, research mathematicians, and physicists interested in Lie theory will find this text very useful.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Compact Lie Groups -- Representations -- HarmoniC Analysis -- Lie Algebras -- Abelian Lie Subgroups and Structure -- Roots and Associated Structures -- Highest Weight Theory.

Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Included is the construction of the Spin groups, Schur Orthogonality, the Peter–Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel–Weil Theorem. The necessary Lie algebra theory is also developed in the text with a streamlined approach focusing on linear Lie groups. Key Features: • Provides an approach that minimizes advanced prerequisites • Self-contained and systematic exposition requiring no previous exposure to Lie theory • Advances quickly to the Peter–Weyl Theorem and its corresponding Fourier theory • Streamlined Lie algebra discussion reduces the differential geometry prerequisite and allows a more rapid transition to the classification and construction of representations • Exercises sprinkled throughout This beginning graduate-level text, aimed primarily at Lie Groups courses and related topics, assumes familiarity with elementary concepts from group theory, analysis, and manifold theory. Students, research mathematicians, and physicists interested in Lie theory will find this text very useful.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha