TEST - Catálogo BURRF
   

Variational Methods in Imaging / by Otmar Scherzer, Markus Grasmair, Harald Grossauer, Markus Haltmeier, Frank Lenzen.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Applied Mathematical Sciences ; 167Editor: New York, NY : Springer New York, 2009Descripción: recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780387692777
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA315-316
Recursos en línea:
Contenidos:
Fundamentals of Imaging -- Case Examples of Imaging -- Image and Noise Models -- Regularization -- Variational Regularization Methods for the Solution of Inverse Problems -- Convex Regularization Methods for Denoising -- Variational Calculus for Non-convex Regularization -- Semi-group Theory and Scale Spaces -- Inverse Scale Spaces -- Mathematical Foundations -- Functional Analysis -- Weakly Differentiable Functions -- Convex Analysis and Calculus of Variations.
Resumen: This book is devoted to the study of variational methods in imaging. The presentation is mathematically rigorous and covers a detailed treatment of the approach from an inverse problems point of view. Key Features: - Introduces variational methods with motivation from the deterministic, geometric, and stochastic point of view - Bridges the gap between regularization theory in image analysis and in inverse problems - Presents case examples in imaging to illustrate the use of variational methods e.g. denoising, thermoacoustics, computerized tomography - Discusses link between non-convex calculus of variations, morphological analysis, and level set methods - Analyses variational methods containing classical analysis of variational methods, modern analysis such as G-norm properties, and non-convex calculus of variations - Uses numerical examples to enhance the theory This book is geared towards graduate students and researchers in applied mathematics. It can serve as a main text for graduate courses in image processing and inverse problems or as a supplemental text for courses on regularization. Researchers and computer scientists in the area of imaging science will also find this book useful.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Fundamentals of Imaging -- Case Examples of Imaging -- Image and Noise Models -- Regularization -- Variational Regularization Methods for the Solution of Inverse Problems -- Convex Regularization Methods for Denoising -- Variational Calculus for Non-convex Regularization -- Semi-group Theory and Scale Spaces -- Inverse Scale Spaces -- Mathematical Foundations -- Functional Analysis -- Weakly Differentiable Functions -- Convex Analysis and Calculus of Variations.

This book is devoted to the study of variational methods in imaging. The presentation is mathematically rigorous and covers a detailed treatment of the approach from an inverse problems point of view. Key Features: - Introduces variational methods with motivation from the deterministic, geometric, and stochastic point of view - Bridges the gap between regularization theory in image analysis and in inverse problems - Presents case examples in imaging to illustrate the use of variational methods e.g. denoising, thermoacoustics, computerized tomography - Discusses link between non-convex calculus of variations, morphological analysis, and level set methods - Analyses variational methods containing classical analysis of variational methods, modern analysis such as G-norm properties, and non-convex calculus of variations - Uses numerical examples to enhance the theory This book is geared towards graduate students and researchers in applied mathematics. It can serve as a main text for graduate courses in image processing and inverse problems or as a supplemental text for courses on regularization. Researchers and computer scientists in the area of imaging science will also find this book useful.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha