TEST - Catálogo BURRF
   

D-Modules, Perverse Sheaves, and Representation Theory / edited by Ryoshi Hotta, Kiyoshi Takeuchi, Toshiyuki Tanisaki.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Progress in Mathematics ; 236Editor: Boston, MA : Birkhäuser Boston, 2008Descripción: xI, 412 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780817645236
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA150-272
Recursos en línea:
Contenidos:
D-Modules and Perverse Sheaves -- Preliminary Notions -- Coherent D-Modules -- Holonomic D-Modules -- Analytic D-Modules and the de Rham Functor -- Theory of Meromorphic Connections -- Regular Holonomic D-Modules -- Riemann–Hilbert Correspondence -- Perverse Sheaves -- Representation Theory -- Algebraic Groups and Lie Algebras -- Conjugacy Classes of Semisimple Lie Algebras -- Representations of Lie Algebras and D-Modules -- Character Formula of HighestWeight Modules -- Hecke Algebras and Hodge Modules.
Resumen: D-modules continues to be an active area of stimulating research in such mathematical areas as algebra, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. Significant concepts and topics that have emerged over the last few decades are presented, including a treatment of the theory of holonomic D-modules, perverse sheaves, the all-important Riemann-Hilbert correspondence, Hodge modules, and the solution to the Kazhdan-Lusztig conjecture using D-module theory. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, and representation theory.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

D-Modules and Perverse Sheaves -- Preliminary Notions -- Coherent D-Modules -- Holonomic D-Modules -- Analytic D-Modules and the de Rham Functor -- Theory of Meromorphic Connections -- Regular Holonomic D-Modules -- Riemann–Hilbert Correspondence -- Perverse Sheaves -- Representation Theory -- Algebraic Groups and Lie Algebras -- Conjugacy Classes of Semisimple Lie Algebras -- Representations of Lie Algebras and D-Modules -- Character Formula of HighestWeight Modules -- Hecke Algebras and Hodge Modules.

D-modules continues to be an active area of stimulating research in such mathematical areas as algebra, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. Significant concepts and topics that have emerged over the last few decades are presented, including a treatment of the theory of holonomic D-modules, perverse sheaves, the all-important Riemann-Hilbert correspondence, Hodge modules, and the solution to the Kazhdan-Lusztig conjecture using D-module theory. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, and representation theory.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha