TEST - Catálogo BURRF
   

Cohomological and Geometric Approaches to Rationality Problems : New Perspectives / edited by Fedor Bogomolov, Yuri Tschinkel.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Progress in Mathematics ; 282Editor: Boston : Birkhäuser Boston, 2010Edición: 1Descripción: x, 314 páginas 47 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780817649340
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA564-609
Recursos en línea:
Contenidos:
The Rationality of Certain Moduli Spaces of Curves of Genus 3 -- The Rationality of the Moduli Space of Curves of Genus 3 after P. Katsylo -- Unramified Cohomology of Finite Groups of Lie Type -- Sextic Double Solids -- Moduli Stacks of Vector Bundles on Curves and the King–Schofield Rationality Proof -- Noether’s Problem for Some -Groups -- Generalized Homological Mirror Symmetry and Rationality Questions -- The Bogomolov Multiplier of Finite Simple Groups -- Derived Categories of Cubic Fourfolds -- Fields of Invariants of Finite Linear Groups -- The Rationality Problem and Birational Rigidity.
Resumen: Rationality problems link algebra to geometry. The difficulties involved depend on the transcendence degree over the ground field, or geometrically, on the dimension of the variety. A major success in 19th century algebraic geometry was a complete solution of the rationality problem in dimensions one and two over algebraically closed ground fields of characteristic zero. These advances have led to many interdisciplinary applications of algebraic geometry. This comprehensive text consists of surveys and research papers by leading specialists in the field. Topics discussed include the rationality of quotient spaces, cohomological invariants of finite groups of Lie type, rationality of moduli spaces of curves, and rational points on algebraic varieties. This volume is intended for research mathematicians and graduate students interested in algebraic geometry, and specifically in rationality problems. I. Bauer C. Böhning F. Bogomolov F. Catanese I. Cheltsov N. Hoffmann S.-J. Hu M.-C. Kang L. Katzarkov B. Kunyavskii A. Kuznetsov J. Park T. Petrov Yu. G. Prokhorov A.V. Pukhlikov Yu. Tschinkel
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

The Rationality of Certain Moduli Spaces of Curves of Genus 3 -- The Rationality of the Moduli Space of Curves of Genus 3 after P. Katsylo -- Unramified Cohomology of Finite Groups of Lie Type -- Sextic Double Solids -- Moduli Stacks of Vector Bundles on Curves and the King–Schofield Rationality Proof -- Noether’s Problem for Some -Groups -- Generalized Homological Mirror Symmetry and Rationality Questions -- The Bogomolov Multiplier of Finite Simple Groups -- Derived Categories of Cubic Fourfolds -- Fields of Invariants of Finite Linear Groups -- The Rationality Problem and Birational Rigidity.

Rationality problems link algebra to geometry. The difficulties involved depend on the transcendence degree over the ground field, or geometrically, on the dimension of the variety. A major success in 19th century algebraic geometry was a complete solution of the rationality problem in dimensions one and two over algebraically closed ground fields of characteristic zero. These advances have led to many interdisciplinary applications of algebraic geometry. This comprehensive text consists of surveys and research papers by leading specialists in the field. Topics discussed include the rationality of quotient spaces, cohomological invariants of finite groups of Lie type, rationality of moduli spaces of curves, and rational points on algebraic varieties. This volume is intended for research mathematicians and graduate students interested in algebraic geometry, and specifically in rationality problems. I. Bauer C. Böhning F. Bogomolov F. Catanese I. Cheltsov N. Hoffmann S.-J. Hu M.-C. Kang L. Katzarkov B. Kunyavskii A. Kuznetsov J. Park T. Petrov Yu. G. Prokhorov A.V. Pukhlikov Yu. Tschinkel

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha