TEST - Catálogo BURRF
   

Variational Methods in Shape Optimization Problems / by Dorin Bucur, Giuseppe Buttazzo.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Progress in Nonlinear Differential Equations and Their Applications ; 65Editor: Boston, MA : Birkhäuser Boston, 2005Descripción: viii, 216 páginas 19 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780817644031
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA315-316
Recursos en línea:
Contenidos:
to Shape Optimization Theory and Some Classical Problems -- Optimization Problems over Classes of Convex Domains -- Optimal Control Problems: A General Scheme -- Shape Optimization Problems with Dirichlet Condition on the Free Boundary -- Existence of Classical Solutions -- Optimization Problems for Functions of Eigenvalues -- Shape Optimization Problems with Neumann Condition on the Free Boundary.
Resumen: The study of shape optimization problems encompasses a wide spectrum of academic research with numerous applications to the real world. In this work these problems are treated from both the classical and modern perspectives and target a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems. Key topics and features: * Presents foundational introduction to shape optimization theory * Studies certain classical problems: the isoperimetric problem and the Newton problem involving the best aerodynamical shape, and optimization problems over classes of convex domains * Treats optimal control problems under a general scheme, giving a topological framework, a survey of "gamma"-convergence, and problems governed by ODE * Examines shape optimization problems with Dirichlet and Neumann conditions on the free boundary, along with the existence of classical solutions * Studies optimization problems for obstacles and eigenvalues of elliptic operators * Poses several open problems for further research * Substantial bibliography and index Driven by good examples and illustrations and requiring only a standard knowledge in the calculus of variations, differential equations, and functional analysis, the book can serve as a text for a graduate course in computational methods of optimal design and optimization, as well as an excellent reference for applied mathematicians addressing functional shape optimization problems.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

to Shape Optimization Theory and Some Classical Problems -- Optimization Problems over Classes of Convex Domains -- Optimal Control Problems: A General Scheme -- Shape Optimization Problems with Dirichlet Condition on the Free Boundary -- Existence of Classical Solutions -- Optimization Problems for Functions of Eigenvalues -- Shape Optimization Problems with Neumann Condition on the Free Boundary.

The study of shape optimization problems encompasses a wide spectrum of academic research with numerous applications to the real world. In this work these problems are treated from both the classical and modern perspectives and target a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems. Key topics and features: * Presents foundational introduction to shape optimization theory * Studies certain classical problems: the isoperimetric problem and the Newton problem involving the best aerodynamical shape, and optimization problems over classes of convex domains * Treats optimal control problems under a general scheme, giving a topological framework, a survey of "gamma"-convergence, and problems governed by ODE * Examines shape optimization problems with Dirichlet and Neumann conditions on the free boundary, along with the existence of classical solutions * Studies optimization problems for obstacles and eigenvalues of elliptic operators * Poses several open problems for further research * Substantial bibliography and index Driven by good examples and illustrations and requiring only a standard knowledge in the calculus of variations, differential equations, and functional analysis, the book can serve as a text for a graduate course in computational methods of optimal design and optimization, as well as an excellent reference for applied mathematicians addressing functional shape optimization problems.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha