TEST - Catálogo BURRF
   

Geometric Methods in Algebra and Number Theory / edited by Fedor Bogomolov, Yuri Tschinkel.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Progress in Mathematics ; 235Editor: Boston, MA : Birkhäuser Boston, 2005Descripción: viii, 362 páginas 6 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780817644178
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA150-272
Recursos en línea:
Contenidos:
From the contents: Preface -- Bauer/Catanese/Grunewald: Beauville surfaces without real structures -- Bogomolov/Tschinkel: Couniformization of curves over number fields -- Budur: On the V-filtration of D-modules -- Chai: Hecke orbits on Siegel modular varieties -- Cluckers/Loeser: Ax-Kochen-Eršov Theorems for p-adic integrals and motivic integration -- De Concini/Procesi: Nested sets and Jeffrey-Kirwan residues -- Ellenberg/Venkatesh: Counting extensions of function fields with bounded discriminant and specified Galois group -- Hassett: Classical and minimal models of the moduli space of curves of genus two -- Hausel: Mirror symmetry and Langlands duality in the non-Abelian Hodge theory of a curve -- Pineiro/Szpiro/Tucker: Mahler measure for dynamical systems on P1 and intersection theory on a singular arithmetic surface -- Pink: A Combination of the Conjecture of Mordell-Lang and André-Oort -- Spitzweck: Motivic approach to limit sheaves.
Resumen: The transparency and power of geometric constructions has been a source of inspiration to generations of mathematicians. The beauty and persuasion of pictures, communicated in words or drawings, continues to provide the intuition and arguments for working with complicated concepts and structures of modern mathematics. This volume contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory. Key topics include: - Curves and their Jacobians - Algebraic surfaceModuli spaces, Shimura varieties - Motives and motivic integration - Number-theoretic applications, rational points - Combinatorial aspects of algebraic geometry - Quantum cohomology - Arithmetic dynamical systems The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry; the text can serve as an intense introduction for graduate students and those wishing to pursue research in these areas.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

From the contents: Preface -- Bauer/Catanese/Grunewald: Beauville surfaces without real structures -- Bogomolov/Tschinkel: Couniformization of curves over number fields -- Budur: On the V-filtration of D-modules -- Chai: Hecke orbits on Siegel modular varieties -- Cluckers/Loeser: Ax-Kochen-Eršov Theorems for p-adic integrals and motivic integration -- De Concini/Procesi: Nested sets and Jeffrey-Kirwan residues -- Ellenberg/Venkatesh: Counting extensions of function fields with bounded discriminant and specified Galois group -- Hassett: Classical and minimal models of the moduli space of curves of genus two -- Hausel: Mirror symmetry and Langlands duality in the non-Abelian Hodge theory of a curve -- Pineiro/Szpiro/Tucker: Mahler measure for dynamical systems on P1 and intersection theory on a singular arithmetic surface -- Pink: A Combination of the Conjecture of Mordell-Lang and André-Oort -- Spitzweck: Motivic approach to limit sheaves.

The transparency and power of geometric constructions has been a source of inspiration to generations of mathematicians. The beauty and persuasion of pictures, communicated in words or drawings, continues to provide the intuition and arguments for working with complicated concepts and structures of modern mathematics. This volume contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory. Key topics include: - Curves and their Jacobians - Algebraic surfaceModuli spaces, Shimura varieties - Motives and motivic integration - Number-theoretic applications, rational points - Combinatorial aspects of algebraic geometry - Quantum cohomology - Arithmetic dynamical systems The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry; the text can serve as an intense introduction for graduate students and those wishing to pursue research in these areas.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha