TEST - Catálogo BURRF
   

Vortices in Bose—Einstein Condensates / by Amandine Aftalion.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Progress in Nonlinear Differential Equations and Their Applications ; 67Editor: Boston, MA : Birkhäuser Boston, 2006Descripción: xii, 203 páginas 18 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780817644925
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA370-380
Recursos en línea:
Contenidos:
The Physical Experiment and Their Mathematical Modeling -- The Mathematical Setting: A Survey of the Main Theorems -- Two-Dimensional Model for otating Condensate -- Other Trapping Potentials -- High-Velocity and Quantam Hall Regime -- Three-Dimensional Rotating Condensate -- Superfluid Flow Around an Obstacle -- Further Open Problems.
Resumen: Since the first experimental achievement of Bose–Einstein condensates (BEC) in 1995 and the award of the Nobel Prize for Physics in 2001, the properties of these gaseous quantum fluids have been the focus of international interest in physics. This monograph is dedicated to the mathematical modelling of some specific experiments which display vortices and to a rigorous analysis of features emerging experimentally. In contrast to a classical fluid, a quantum fluid such as a Bose–Einstein condensate can rotate only through the nucleation of quantized vortices beyond some critical velocity. There are two interesting regimes: one close to the critical velocity, where there is only one vortex that has a very special shape; and another one at high rotation values, for which a dense lattice is observed. One of the key features related to superfluidity is the existence of these vortices. We address this issue mathematically and derive information on their shape, number, and location. In the dilute limit of these experiments, the condensate is well described by a mean field theory and a macroscopic wave function solving the so-called Gross–Pitaevskii equation. The mathematical tools employed are energy estimates, Gamma convergence, and homogenization techniques. We prove existence of solutions that have properties consistent with the experimental observations. Open problems related to recent experiments are presented. The work can serve as a reference for mathematical researchers and theoretical physicists interested in superfluidity and quantum fluids, and can also complement a graduate seminar in elliptic PDEs or modelling of physical experiments.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

The Physical Experiment and Their Mathematical Modeling -- The Mathematical Setting: A Survey of the Main Theorems -- Two-Dimensional Model for otating Condensate -- Other Trapping Potentials -- High-Velocity and Quantam Hall Regime -- Three-Dimensional Rotating Condensate -- Superfluid Flow Around an Obstacle -- Further Open Problems.

Since the first experimental achievement of Bose–Einstein condensates (BEC) in 1995 and the award of the Nobel Prize for Physics in 2001, the properties of these gaseous quantum fluids have been the focus of international interest in physics. This monograph is dedicated to the mathematical modelling of some specific experiments which display vortices and to a rigorous analysis of features emerging experimentally. In contrast to a classical fluid, a quantum fluid such as a Bose–Einstein condensate can rotate only through the nucleation of quantized vortices beyond some critical velocity. There are two interesting regimes: one close to the critical velocity, where there is only one vortex that has a very special shape; and another one at high rotation values, for which a dense lattice is observed. One of the key features related to superfluidity is the existence of these vortices. We address this issue mathematically and derive information on their shape, number, and location. In the dilute limit of these experiments, the condensate is well described by a mean field theory and a macroscopic wave function solving the so-called Gross–Pitaevskii equation. The mathematical tools employed are energy estimates, Gamma convergence, and homogenization techniques. We prove existence of solutions that have properties consistent with the experimental observations. Open problems related to recent experiments are presented. The work can serve as a reference for mathematical researchers and theoretical physicists interested in superfluidity and quantum fluids, and can also complement a graduate seminar in elliptic PDEs or modelling of physical experiments.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha