TEST - Catálogo BURRF
   

Ramsey Theory : Yesterday, Today, and Tomorrow / edited by Alexander Soifer.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Progress in Mathematics ; 285Editor: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2011Edición: 1Descripción: xiv, 190 páginas 28 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780817680923
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA164-167.2
Recursos en línea:
Contenidos:
How This Book Came into Being -- Table of Contents -- Ramsey Theory before Ramsey, Prehistory and Early History: An Essay in 13 Parts -- Eighty Years of Ramsey R(3, k). . . and Counting! -- Ramsey Numbers Involving Cycles -- On the function of Erd?s and Rogers -- Large Monochromatic Components in Edge Colorings of Graphs -- Szlam’s Lemma: Mutant Offspring of a Euclidean Ramsey Problem: From 1973, with Numerous Applications -- Open Problems in Euclidean Ramsey Theory -- Chromatic Number of the Plane and Its Relatives, History, Problems and Results: An Essay in 11 Parts -- Euclidean Distance Graphs on the Rational Points -- Open Problems Session.
Resumen: Ramsey theory is a relatively “new,” approximately 100 year-old direction of fascinating mathematical thought that touches on many classic fields of mathematics such as combinatorics, number theory, geometry, ergodic theory, topology, combinatorial geometry, set theory, and measure theory. Ramsey theory possesses its own unifying ideas, and some of its results are among the most beautiful theorems of mathematics. The underlying theme of Ramsey theory can be formulated as: any finite coloring of a large enough system contains a monochromatic subsystem of higher degree of organization than the system itself, or as T.S. Motzkin famously put it, absolute disorder is impossible. Ramsey Theory: Yesterday, Today, and Tomorrow explores the theory’s history, recent developments, and some promising future directions through invited surveys written by prominent researchers in the field. The first three surveys provide historical background on the subject; the last three address Euclidean Ramsey theory and related coloring problems. In addition, open problems posed throughout the volume and in the concluding open problem chapter will appeal to graduate students and mathematicians alike. Contributors: J. Burkert, A. Dudek, R.L. Graham, A. Gyárfás, P.D. Johnson, Jr., S.P. Radziszowski, V. Rödl, J.H. Spencer, A. Soifer, E. Tressler.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

How This Book Came into Being -- Table of Contents -- Ramsey Theory before Ramsey, Prehistory and Early History: An Essay in 13 Parts -- Eighty Years of Ramsey R(3, k). . . and Counting! -- Ramsey Numbers Involving Cycles -- On the function of Erd?s and Rogers -- Large Monochromatic Components in Edge Colorings of Graphs -- Szlam’s Lemma: Mutant Offspring of a Euclidean Ramsey Problem: From 1973, with Numerous Applications -- Open Problems in Euclidean Ramsey Theory -- Chromatic Number of the Plane and Its Relatives, History, Problems and Results: An Essay in 11 Parts -- Euclidean Distance Graphs on the Rational Points -- Open Problems Session.

Ramsey theory is a relatively “new,” approximately 100 year-old direction of fascinating mathematical thought that touches on many classic fields of mathematics such as combinatorics, number theory, geometry, ergodic theory, topology, combinatorial geometry, set theory, and measure theory. Ramsey theory possesses its own unifying ideas, and some of its results are among the most beautiful theorems of mathematics. The underlying theme of Ramsey theory can be formulated as: any finite coloring of a large enough system contains a monochromatic subsystem of higher degree of organization than the system itself, or as T.S. Motzkin famously put it, absolute disorder is impossible. Ramsey Theory: Yesterday, Today, and Tomorrow explores the theory’s history, recent developments, and some promising future directions through invited surveys written by prominent researchers in the field. The first three surveys provide historical background on the subject; the last three address Euclidean Ramsey theory and related coloring problems. In addition, open problems posed throughout the volume and in the concluding open problem chapter will appeal to graduate students and mathematicians alike. Contributors: J. Burkert, A. Dudek, R.L. Graham, A. Gyárfás, P.D. Johnson, Jr., S.P. Radziszowski, V. Rödl, J.H. Spencer, A. Soifer, E. Tressler.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha