TEST - Catálogo BURRF
   

An Introduction to Nonlinear Functional Analysis and Elliptic Problems / by Antonio Ambrosetti, David Arcoya.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Progress in Nonlinear Differential Equations and Their Applications ; 82Editor: Boston : Birkhäuser Boston, 2011Descripción: xii, 199 páginas 12 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780817681142
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA319-329.9
Recursos en línea:
Contenidos:
Notation -- Preliminaries -- Some Fixed Point Theorems -- Local and Global Inversion Theorems -- Leray-Schauder Topological Degree -- An Outline of Critical Points -- Bifurcation Theory -- Elliptic Problems and Functional Analysis -- Problems with A Priori Bounds -- Asymptotically Linear Problems -- Asymmetric Nonlinearities -- Superlinear Problems -- Quasilinear Problems -- Stationary States of Evolution Equations -- Appendix A Sobolev Spaces -- Exercises -- Index -- Bibliography.
Resumen: This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems. By first outlining the advantages and disadvantages of each method, this comprehensive text displays how various approaches can easily be applied to a range of model cases. An Introduction to Nonlinear Functional Analysis and Elliptic Problems is divided into two parts: the first discusses key results such as the Banach contraction principle, a fixed point theorem for increasing operators, local and global inversion theory, Leray–Schauder degree, critical point theory, and bifurcation theory; the second part shows how these abstract results apply to Dirichlet elliptic boundary value problems.  The exposition is driven by numerous prototype problems and exposes a variety of approaches to solving them. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Notation -- Preliminaries -- Some Fixed Point Theorems -- Local and Global Inversion Theorems -- Leray-Schauder Topological Degree -- An Outline of Critical Points -- Bifurcation Theory -- Elliptic Problems and Functional Analysis -- Problems with A Priori Bounds -- Asymptotically Linear Problems -- Asymmetric Nonlinearities -- Superlinear Problems -- Quasilinear Problems -- Stationary States of Evolution Equations -- Appendix A Sobolev Spaces -- Exercises -- Index -- Bibliography.

This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems. By first outlining the advantages and disadvantages of each method, this comprehensive text displays how various approaches can easily be applied to a range of model cases. An Introduction to Nonlinear Functional Analysis and Elliptic Problems is divided into two parts: the first discusses key results such as the Banach contraction principle, a fixed point theorem for increasing operators, local and global inversion theory, Leray–Schauder degree, critical point theory, and bifurcation theory; the second part shows how these abstract results apply to Dirichlet elliptic boundary value problems.  The exposition is driven by numerous prototype problems and exposes a variety of approaches to solving them. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha