TEST - Catálogo BURRF
   

Differentiable Manifolds : A Theoretical Physics Approach / by Gerardo F. Torres del Castillo.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Boston : Birkhäuser Boston, 2012Descripción: viii, 275 páginas 20 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780817682712
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA613-613.8
Recursos en línea:
Contenidos:
Preface.-1 Manifolds.-  2 Lie Derivatives -- 3 Differential Forms -- 4 Integral Manifolds -- 5 Connections -- 6. Riemannian Manifolds -- 7 Lie Groups -- 8 Hamiltonian Classical Mechanics -- References.-Index.
Resumen: This textbook gives a concise introduction to the theory of differentiable manifolds, focusing on their applications to differential equations, differential geometry, and Hamiltonian mechanics. The work’s first three chapters introduce the basic concepts of the theory, such as differentiable maps, tangent vectors, vector and tensor fields, differential forms, local one-parameter groups of diffeomorphisms, and Lie derivatives. These tools are subsequently employed in the study of differential equations (Chapter 4), connections (Chapter 5), Riemannian manifolds (Chapter 6), Lie groups (Chapter 7), and Hamiltonian mechanics (Chapter 8). Throughout, the book contains examples, worked out in detail, as well as exercises intended to show how the formalism is applied to actual computations and to emphasize the connections among various areas of mathematics. Differentiable Manifolds is addressed to advanced undergraduate or beginning graduate students in mathematics or physics. Prerequisites include multivariable calculus, linear algebra, differential equations, and (for the last chapter) a basic knowledge of analytical mechanics.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preface.-1 Manifolds.-  2 Lie Derivatives -- 3 Differential Forms -- 4 Integral Manifolds -- 5 Connections -- 6. Riemannian Manifolds -- 7 Lie Groups -- 8 Hamiltonian Classical Mechanics -- References.-Index.

This textbook gives a concise introduction to the theory of differentiable manifolds, focusing on their applications to differential equations, differential geometry, and Hamiltonian mechanics. The work’s first three chapters introduce the basic concepts of the theory, such as differentiable maps, tangent vectors, vector and tensor fields, differential forms, local one-parameter groups of diffeomorphisms, and Lie derivatives. These tools are subsequently employed in the study of differential equations (Chapter 4), connections (Chapter 5), Riemannian manifolds (Chapter 6), Lie groups (Chapter 7), and Hamiltonian mechanics (Chapter 8). Throughout, the book contains examples, worked out in detail, as well as exercises intended to show how the formalism is applied to actual computations and to emphasize the connections among various areas of mathematics. Differentiable Manifolds is addressed to advanced undergraduate or beginning graduate students in mathematics or physics. Prerequisites include multivariable calculus, linear algebra, differential equations, and (for the last chapter) a basic knowledge of analytical mechanics.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha