Fluid Transport in Nanoporous Materials / edited by Wm. Curtis Conner, Jacques Fraissard.
Tipo de material:
- texto
- computadora
- recurso en línea
- 9781402043826
- TP155-156
Springer eBooks
NATO-ASI FLUID TRANSPORT IN NANOPOROUS MATERIALS COURSE .a student’s perspective and explanations from a veteran -- TRANSPORT IN MICROPOROUS SOLIDS: AN HISTORICAL PERPECTIVE Part I: Fundamental Principles and Sorption Kinetics -- MEASUREMENT OF DIFFUSION IN MACROMOLECULAR SYSTEMS: SOLUTE DIFFUSION IN POLYMERS SYSTEMS -- THE ROLE OF DIFFUSION IN APPLICATIONS OF NOVEL NANOPOROUS MATERIALS AND IN NOVEL USES OF TRADITIONAL MATERIALS -- MODELING JUMP DIFFUSION IN ZEOLITES: I. PRINCIPLES AND METHODS -- ADSORPTION, THERMODYNAMICS AND MOLECULAR SIMULATIONS OF CYCLIC HYDROCARBONS IN SILICALITE-1 AND ALPO4-5 ZEOLITES -- TRANSPORT IN MICROPOROUS SOLIDS Part II: Measurement of Micropore Diffusivities -- STRUCTURE-RELATED ANOMALOUS DIFFUSION IN ZEOLITES -- THE CONTRIBUTION OF SURFACE DIFFUSION TO TRANSPORT IN NANOPOROUS SOLIDS -- THE MAXWELL-STEFAN FORMULATION OF DIFFUSION IN ZEOLITES -- SENSITIVITY AND RESOLUTION IN MAGNETIC RESONANCE IMAGING OF DIFFUSIVE MATERIALS -- RESTRICTED DIFFUSION AND MOLECULAR EXCHANGE PROCESSES IN POROUS MEDIA AS STUDIED BY PULSED FIELD GRADIENT NMR -- VIBRATIONAL SPECTROSCOPY TO MONITOR SYNTHESIS, ADSORPTION AND DIFFUSION IN MICRO- AND MESOPOROUS METAL PHOSPHATES -- NITROGEN – OXYGEN DIFFUSION IN ZEOLITES STUDIED BY DRIFT -- 129Xe NMR FOR DIFFUSION OF HYDROCARBONS IN ZEOLITES AND 1H NMR IMAGING FOR COMPETITIVE DIFFUSION OF BINARY MIXTURES OF HYDROCARBONS IN ZEOLITES -- DIFFUSION IN ZEOLITES MEASURED BY NEUTRON SCATTERING TECHNIQUES -- NMR IMAGING AS A TOOL FOR STUDYING MASS TRANSPORT IN POROUS MATERIALS -- PFG NMR DIFFUSION STUDIES OF NANOPOROUS MATERIALS -- DIFFUSION OF CYCLIC HYDROCARBONS IN ZEOLITES BY FREQUENCY-RESPONSE AND MOLECULAR SIMULATION METHODS -- SURFACE DIFFUSION OF LIQUIDS IN DISORDERED NANOPORES AND MATERIALS: A FIELD CYCLING RELAXOMETRY APPROACH -- NEW TRENDS ON MEMBRANE SCIENCE -- THE IONIC AND MOLECULAR TRANSPORT IN POLYMERIC AND BIOLOGICAL MEMBRANES ON MAGNETIC RESONANCE DATA -- MOLECULAR MODELING: A COMPLEMENT TO EXPERIMENT IN MATERIAL RESEARCH FOR NON CRYOGENIC GAS SEPARATION TECHNOLOGIES -- MODELING JUMP DIFFUSION IN ZEOLITES: II. APPLICATIONS -- DYNAMICS OF WATER SORPTION ON COMPOSITES “CaCl2IN SILICA”: SINGLE GRAIN, GRANULATED BED, CONSOLIDATED LAYER -- EFFECT OF CARBONACEOUS COMPOUNDS ON DIFFUSION OF ALKANES IN 5A ZEOLITE -- APPLICATION OF INTERFERENCE AND IR MICROSCOPY FOR STUDIES OF INTRACRYSTALLINE MOLECULAR TRANSPORT IN AFI TYPE ZEOLITES -- COAL CHARACTERIZATION FOR CARBON DIOXIDE SEQUESTRATION PURPOSES -- EFFECT OF THE INTRAWALL MICROPOROSITY ON THE DIFFUSION CHARACTERIZATION OF BI-POROUS SBA-15 MATERIALS -- STRUCTURE OF A SINGLE-SPECIES-FLUID IN A SPHERICAL PORE -- CARBON MOLECULAR SIEVE MEMBRANES: CHARACTERISATION AND APPLICATION TO XENON RECYCLING -- AN EXPERIMENTAL STUDY OF THE STATE OF HEXANE IN A CONFINED GEOMETRY -- A MODEL FOR SOUND PROPAGATION IN THE PRESENCE OF MICROPOROUS SOLIDS -- MATHEMATICAL MODELLING AND RESEARCH FOR DIFFUSION PROCESSES IN MULTILAYER AND NANOPOROUS MEDIA -- NEURONAL NETWORK USED FOR INVESTIGATION OF WATER IN POLYMER GELS -- DEPENDENCE OF SELF-DIFFUSION COEFFICIENT ON GEOMETRICAL PARAMETERS OF POROUS MEDIA.
This NATO ASI involved teachings and perspectives of the state-of-the-art in experimental and theoretical understandings of transport in nanoporous solids. This workshop brought together the top scientists and engineers in each area to discuss the similarities and differences in each technique and theory. The lectures truly bridge the gaps between these related areas and approaches. The applications in future separations, catalysis, the environment and energy needs are obvious. The solids comprised the newly developing molecular sieves, biological systems and polymeric solids. Transport in single particles, in membranes and in commercial applications were reviewed and analyzed, placing each in context. Techniques such as uptake, Chromatographic, Frequency Response, NMR, Neutron Scattering and Infrared spectroscopies are discussed for mixtures as well as for single components. Theoretical approaches such as Density Functional Theory, Statistical Mechanics, Molecular Dynamics and Maxwell-Stefan Theory are employed to analyze the diffusional transport in confined environments, spanning from sub-nanometers to centimetre scales. In all cases the theories are related to the experiments. These lectures present a uniquq opportunity to learn the various theoretical and experimental approaches to analyze and understand transport in nanoporous materials.
Para consulta fuera de la UANL se requiere clave de acceso remoto.