TEST - Catálogo BURRF
   

Graph-Based Clustering and Data Visualization Algorithms / by Ágnes Vathy-Fogarassy, János Abonyi.

Por: Colaborador(es): Tipo de material: TextoTextoSeries SpringerBriefs in Computer ScienceEditor: London : Springer London : Imprint: Springer, 2013Descripción: xiii, 110 páginas 62 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781447151586
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA76.9.D343
Recursos en línea:
Contenidos:
Vector Quantisation and Topology-Based Graph Representation -- Graph-Based Clustering Algorithms -- Graph-Based Visualisation of High-Dimensional Data.
Resumen: This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Vector Quantisation and Topology-Based Graph Representation -- Graph-Based Clustering Algorithms -- Graph-Based Visualisation of High-Dimensional Data.

This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha