TEST - Catálogo BURRF
   

Computability and Complexity Theory / by Steven Homer, Alan L. Selman.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Texts in Computer ScienceEditor: Boston, MA : Springer US : Imprint: Springer, 2011Edición: 2Descripción: xvI, 298 páginas 50 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781461406822
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA75.5-76.95
Recursos en línea:
Contenidos:
Preliminaries -- Introduction to Computability -- Undecidability -- Introduction to Complexity Theory -- Basic Results of Complexity Theory -- Nondeterminism and NP-Completeness -- Relative Computability -- Nonuniform Complexity -- Parallelism -- Probabilistic Complexity Classes -- Introduction to Counting Classes -- Interactive Proof Systems -- References -- Author Index -- Subject Index.
Resumen: This revised and extensively expanded edition of Computability and Complexity Theory comprises essential materials that are core knowledge in the theory of computation. The book is self-contained, with a preliminary chapter describing key mathematical concepts and notations.  Subsequent chapters move from the qualitative aspects of classical computability theory to the quantitative aspects of complexity theory. Dedicated chapters on undecidability, NP-completeness, and relative computability focus on the limitations of computability and the distinctions between feasible and intractable.  Substantial new content in this edition includes: a chapter on nonuniformity studying Boolean circuits, advice classes and the important result of Karp?Lipton. a chapter studying properties of the fundamental probabilistic complexity classes a study of the alternating Turing machine and uniform circuit classes. an introduction of counting classes, proving the famous results of Valiant and Vazirani and of Toda a thorough treatment of the proof that IP is identical to PSPACE With its accessibility and well-devised organization, this text/reference is an excellent resource and guide for those looking to develop a solid grounding in the theory of computing. Beginning graduates, advanced undergraduates, and professionals involved in theoretical computer science, complexity theory, and computability will find the book an essential and practical learning tool.   Topics and features: Concise, focused  materials cover the most fundamental concepts and results in the field of modern complexity theory, including the theory of NP-completeness, NP-hardness, the polynomial hierarchy, and complete problems for other complexity classes Contains information that otherwise exists only in research literature and presents it in a unified, simplified manner Provides key mathematical background information, including sections on logic and number theory and algebra Supported by numerous exercises and supplementary problems for reinforcement and self-study purposes
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preliminaries -- Introduction to Computability -- Undecidability -- Introduction to Complexity Theory -- Basic Results of Complexity Theory -- Nondeterminism and NP-Completeness -- Relative Computability -- Nonuniform Complexity -- Parallelism -- Probabilistic Complexity Classes -- Introduction to Counting Classes -- Interactive Proof Systems -- References -- Author Index -- Subject Index.

This revised and extensively expanded edition of Computability and Complexity Theory comprises essential materials that are core knowledge in the theory of computation. The book is self-contained, with a preliminary chapter describing key mathematical concepts and notations.  Subsequent chapters move from the qualitative aspects of classical computability theory to the quantitative aspects of complexity theory. Dedicated chapters on undecidability, NP-completeness, and relative computability focus on the limitations of computability and the distinctions between feasible and intractable.  Substantial new content in this edition includes: a chapter on nonuniformity studying Boolean circuits, advice classes and the important result of Karp?Lipton. a chapter studying properties of the fundamental probabilistic complexity classes a study of the alternating Turing machine and uniform circuit classes. an introduction of counting classes, proving the famous results of Valiant and Vazirani and of Toda a thorough treatment of the proof that IP is identical to PSPACE With its accessibility and well-devised organization, this text/reference is an excellent resource and guide for those looking to develop a solid grounding in the theory of computing. Beginning graduates, advanced undergraduates, and professionals involved in theoretical computer science, complexity theory, and computability will find the book an essential and practical learning tool.   Topics and features: Concise, focused  materials cover the most fundamental concepts and results in the field of modern complexity theory, including the theory of NP-completeness, NP-hardness, the polynomial hierarchy, and complete problems for other complexity classes Contains information that otherwise exists only in research literature and presents it in a unified, simplified manner Provides key mathematical background information, including sections on logic and number theory and algebra Supported by numerous exercises and supplementary problems for reinforcement and self-study purposes

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha