TEST - Catálogo BURRF
   

Stochastic Recursive Algorithms for Optimization : Simultaneous Perturbation Methods / by S. Bhatnagar, H.L. Prasad, L.A. Prashanth.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Control and Information Sciences ; 434Editor: London : Springer London : Imprint: Springer, 2013Descripción: xviii, 302 páginas 12 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781447142850
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • TJ212-225
Recursos en línea:
Contenidos:
Part I: Introduction to Stochastic Recursive Algorithms -- Introduction -- Deterministic Algorithms for Local Search -- Stochastic Approximation Algorithms -- Part II: Gradient Estimation Schemes -- Kiefer-Wolfowitz Algorithm -- Gradient Schemes with Simultaneous Perturbation Stochastic Approximation -- Smoothed Functional Gradient Schemes -- Part III: Hessian Estimation Schemes -- Hessian Estimation with Simultaneous Perturbation Stochasti Approximation -- Smoothed Functional Hessian Schemes -- Part IV: Variations to the Basic Scheme -- Discrete Optimization -- Algorithms for Contrained Optimization -- Reinforcement Learning -- Part V: Applications -- Service Systems -- Road Traffic Control -- Communication Networks.
Resumen: Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from similarly diverse backgrounds: workers in relevant areas of computer science, control engineering, management science, applied mathematics, industrial engineering and operations research will find the content of value.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Part I: Introduction to Stochastic Recursive Algorithms -- Introduction -- Deterministic Algorithms for Local Search -- Stochastic Approximation Algorithms -- Part II: Gradient Estimation Schemes -- Kiefer-Wolfowitz Algorithm -- Gradient Schemes with Simultaneous Perturbation Stochastic Approximation -- Smoothed Functional Gradient Schemes -- Part III: Hessian Estimation Schemes -- Hessian Estimation with Simultaneous Perturbation Stochasti Approximation -- Smoothed Functional Hessian Schemes -- Part IV: Variations to the Basic Scheme -- Discrete Optimization -- Algorithms for Contrained Optimization -- Reinforcement Learning -- Part V: Applications -- Service Systems -- Road Traffic Control -- Communication Networks.

Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from similarly diverse backgrounds: workers in relevant areas of computer science, control engineering, management science, applied mathematics, industrial engineering and operations research will find the content of value.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha