TEST - Catálogo BURRF
   

Functional Spaces for the Theory of Elliptic Partial Differential Equations / by Françoise Demengel, Gilbert Demengel.

Por: Colaborador(es): Tipo de material: TextoTextoSeries UniversitextEditor: London : Springer London : Imprint: Springer, 2012Descripción: xviii, 465 páginas 11 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781447128076
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA370-380
Recursos en línea:
Contenidos:
Preliminaries on ellipticity -- Notions from Topology and Functional Analysis -- Sobolev Spaces and Embedding Theorems -- Traces of Functions on Sobolev Spaces -- Fractional Sobolev Spaces -- Elliptic PDE: Variational Techniques -- Distributions with measures as derivatives.- Korn's Inequality in Lp -- Appendix on Regularity.
Resumen: Linear and non-linear elliptic boundary problems are a fundamental subject in analysis and the spaces of weakly differentiable functions (also called Sobolev spaces) are an essential tool for analysing the regularity of its solutions.   The complete theory of Sobolev spaces is covered whilst also explaining how abstract convex analysis can be combined with this theory to produce existence results for the solutions of non-linear elliptic boundary problems. Other kinds of functional spaces are also included, useful for treating variational problems such as the minimal surface problem.   Almost every result comes with a complete and detailed proof. In some cases, more than one proof is provided in order to highlight different aspects of the result. A range of exercises of varying levels of difficulty concludes each chapter with hints to solutions for many of them.   It is hoped that this book will provide a tool for graduate and postgraduate students interested in partial differential equations, as well as a useful reference for researchers active in the field. Prerequisites include a knowledge of classical analysis, differential calculus, Banach and Hilbert spaces, integration and the related standard functional spaces, as well as the Fourier transformation on Schwartz spaces.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preliminaries on ellipticity -- Notions from Topology and Functional Analysis -- Sobolev Spaces and Embedding Theorems -- Traces of Functions on Sobolev Spaces -- Fractional Sobolev Spaces -- Elliptic PDE: Variational Techniques -- Distributions with measures as derivatives.- Korn's Inequality in Lp -- Appendix on Regularity.

Linear and non-linear elliptic boundary problems are a fundamental subject in analysis and the spaces of weakly differentiable functions (also called Sobolev spaces) are an essential tool for analysing the regularity of its solutions.   The complete theory of Sobolev spaces is covered whilst also explaining how abstract convex analysis can be combined with this theory to produce existence results for the solutions of non-linear elliptic boundary problems. Other kinds of functional spaces are also included, useful for treating variational problems such as the minimal surface problem.   Almost every result comes with a complete and detailed proof. In some cases, more than one proof is provided in order to highlight different aspects of the result. A range of exercises of varying levels of difficulty concludes each chapter with hints to solutions for many of them.   It is hoped that this book will provide a tool for graduate and postgraduate students interested in partial differential equations, as well as a useful reference for researchers active in the field. Prerequisites include a knowledge of classical analysis, differential calculus, Banach and Hilbert spaces, integration and the related standard functional spaces, as well as the Fourier transformation on Schwartz spaces.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha