TEST - Catálogo BURRF
   

Entropy Guided Transformation Learning: Algorithms and Applications / by Cícero Nogueira Santos, Ruy Luiz Milidiú.

Por: Colaborador(es): Tipo de material: TextoTextoSeries SpringerBriefs in Computer ScienceEditor: London : Springer London, 2012Descripción: xiii, 78 páginas 10 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781447129783
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • Q337.5
Recursos en línea:
Contenidos:
Preface -- Acknowledgements -- Acronyms -- Part I Entropy Guided Transformation Learning: Algorithms -- Introduction -- Entropy Guided Transformation Learning -- ETL Committee -- Part II Entropy Guided Transformation Learning: Applications -- General ETL Modeling for NLP Tasks -- Part-of-Speech Tagging -- Phrase Chunking -- Named Entity Recognition -- Semantic Role Labeling -- Conclusions -- Appendices.
Resumen: Entropy Guided Transformation Learning: Algorithms and Applications (ETL) presents a machine learning algorithm for classification tasks. ETL generalizes Transformation Based Learning (TBL) by solving the TBL bottleneck: the construction of good template sets. ETL automatically generates templates using Decision Tree decomposition. The authors describe ETL Committee, an ensemble method that uses ETL as the base learner. Experimental results show that ETL Committee improves the effectiveness of ETL classifiers. The application of ETL is presented to four Natural Language Processing (NLP) tasks: part-of-speech tagging, phrase chunking, named entity recognition and semantic role labeling. Extensive experimental results demonstrate that ETL is an effective way to learn accurate transformation rules, and shows better results than TBL with handcrafted templates for the four tasks. By avoiding the use of handcrafted templates, ETL enables the use of transformation rules to a greater range of tasks. Suitable for both advanced undergraduate and graduate courses, Entropy Guided Transformation Learning: Algorithms and Applications provides a comprehensive introduction to ETL and its NLP applications.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preface -- Acknowledgements -- Acronyms -- Part I Entropy Guided Transformation Learning: Algorithms -- Introduction -- Entropy Guided Transformation Learning -- ETL Committee -- Part II Entropy Guided Transformation Learning: Applications -- General ETL Modeling for NLP Tasks -- Part-of-Speech Tagging -- Phrase Chunking -- Named Entity Recognition -- Semantic Role Labeling -- Conclusions -- Appendices.

Entropy Guided Transformation Learning: Algorithms and Applications (ETL) presents a machine learning algorithm for classification tasks. ETL generalizes Transformation Based Learning (TBL) by solving the TBL bottleneck: the construction of good template sets. ETL automatically generates templates using Decision Tree decomposition. The authors describe ETL Committee, an ensemble method that uses ETL as the base learner. Experimental results show that ETL Committee improves the effectiveness of ETL classifiers. The application of ETL is presented to four Natural Language Processing (NLP) tasks: part-of-speech tagging, phrase chunking, named entity recognition and semantic role labeling. Extensive experimental results demonstrate that ETL is an effective way to learn accurate transformation rules, and shows better results than TBL with handcrafted templates for the four tasks. By avoiding the use of handcrafted templates, ETL enables the use of transformation rules to a greater range of tasks. Suitable for both advanced undergraduate and graduate courses, Entropy Guided Transformation Learning: Algorithms and Applications provides a comprehensive introduction to ETL and its NLP applications.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha