TEST - Catálogo BURRF
   

Smoothing Spline ANOVA Models / by Chong Gu.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Springer Series in Statistics ; 297Editor: New York, NY : Springer New York : Imprint: Springer, 2013Edición: 2nd ed. 2013Descripción: xviii, 433 páginas 82 ilustraciones, 69 ilustraciones en color. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781461453697
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA276-280
Recursos en línea:
Contenidos:
Introduction -- Model Construction -- Regression with Gaussian-Type Responses -- More Splines -- Regression and Exponential Families -- Regression with Correlated Responses -- Probability Density Estimation -- Hazard Rate Estimation -- Asymptotic Convergence -- Penalized Pseudo Likelihood.
Resumen: Nonparametric function estimation with stochastic data, otherwise known as smoothing, has been studied by several generations of statisticians. Assisted by the ample computing power in today's servers, desktops, and laptops, smoothing methods have been finding their ways into everyday data analysis by practitioners. While scores of methods have proved successful for univariate smoothing, ones practical in multivariate settings number far less. Smoothing spline ANOVA models are a versatile family of smoothing methods derived through roughness penalties, that are suitable for both univariate and multivariate problems. In this book, the author presents a treatise on penalty smoothing under a unified framework. Methods are developed for (i) regression with Gaussian and non-Gaussian responses as well as with censored lifetime data; (ii) density and conditional density estimation under a variety of sampling schemes; and (iii) hazard rate estimation with censored life time data and covariates. The unifying themes are the general penalized likelihood method and the construction of multivariate models with built-in ANOVA decompositions. Extensive discussions are devoted to model construction, smoothing parameter selection, computation, and asymptotic convergence.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Introduction -- Model Construction -- Regression with Gaussian-Type Responses -- More Splines -- Regression and Exponential Families -- Regression with Correlated Responses -- Probability Density Estimation -- Hazard Rate Estimation -- Asymptotic Convergence -- Penalized Pseudo Likelihood.

Nonparametric function estimation with stochastic data, otherwise known as smoothing, has been studied by several generations of statisticians. Assisted by the ample computing power in today's servers, desktops, and laptops, smoothing methods have been finding their ways into everyday data analysis by practitioners. While scores of methods have proved successful for univariate smoothing, ones practical in multivariate settings number far less. Smoothing spline ANOVA models are a versatile family of smoothing methods derived through roughness penalties, that are suitable for both univariate and multivariate problems. In this book, the author presents a treatise on penalty smoothing under a unified framework. Methods are developed for (i) regression with Gaussian and non-Gaussian responses as well as with censored lifetime data; (ii) density and conditional density estimation under a variety of sampling schemes; and (iii) hazard rate estimation with censored life time data and covariates. The unifying themes are the general penalized likelihood method and the construction of multivariate models with built-in ANOVA decompositions. Extensive discussions are devoted to model construction, smoothing parameter selection, computation, and asymptotic convergence.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha