TEST - Catálogo BURRF
   

Logic Synthesis for Genetic Diseases : Modeling Disease Behavior Using Boolean Networks / by Pey-Chang Kent Lin, Sunil P. Khatri.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: New York, NY : Springer New York : Imprint: Springer, 2014Descripción: xxI, 100 páginas 28 ilustraciones, 8 ilustraciones en color. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781461494294
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • TK7888.4
Recursos en línea:
Contenidos:
Introduction -- Part I Inference of Gene Regulatory Networks -- Predictor Set Inference using SAT -- Determining Gene Function in Boolean Networks using SAT -- Predictor Ranking using Modified Zhegalkin Functions -- Part II Intervention of Gene Regulatory Networks -- ATPG for Cancer Therapy -- Summary and Future Work.
Resumen: This book brings to bear a body of logic synthesis techniques, in order to contribute to the analysis and control of Boolean Networks (BN) for modeling genetic diseases such as cancer. The authors provide several VLSI logic techniques to model the genetic disease behavior as a BN, with powerful implicit enumeration techniques. Coverage also includes techniques from VLSI testing to control a faulty BN, transforming its behavior to a healthy BN, potentially aiding in efforts to find the best candidates for treatment of genetic diseases.    • Discusses a new application for logic synthesis, which enables the use of Boolean Networks to model the behavior of genetic-based diseases; • Demonstrates how techniques such as Boolean Satisfiability (SAT) and Automatic Test Pattern Generation (ATPG) can be applied in the context of genetics; • Provides content that appeals to researchers in genetics and logic synthesis and enables readers to make the connection between genetic diseases and logic techniques in a clear, unambiguous manner.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Introduction -- Part I Inference of Gene Regulatory Networks -- Predictor Set Inference using SAT -- Determining Gene Function in Boolean Networks using SAT -- Predictor Ranking using Modified Zhegalkin Functions -- Part II Intervention of Gene Regulatory Networks -- ATPG for Cancer Therapy -- Summary and Future Work.

This book brings to bear a body of logic synthesis techniques, in order to contribute to the analysis and control of Boolean Networks (BN) for modeling genetic diseases such as cancer. The authors provide several VLSI logic techniques to model the genetic disease behavior as a BN, with powerful implicit enumeration techniques. Coverage also includes techniques from VLSI testing to control a faulty BN, transforming its behavior to a healthy BN, potentially aiding in efforts to find the best candidates for treatment of genetic diseases.    • Discusses a new application for logic synthesis, which enables the use of Boolean Networks to model the behavior of genetic-based diseases; • Demonstrates how techniques such as Boolean Satisfiability (SAT) and Automatic Test Pattern Generation (ATPG) can be applied in the context of genetics; • Provides content that appeals to researchers in genetics and logic synthesis and enables readers to make the connection between genetic diseases and logic techniques in a clear, unambiguous manner.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha