TEST - Catálogo BURRF
   

Abstraction in Artificial Intelligence and Complex Systems / by Lorenza Saitta, Jean-Daniel Zucker.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: New York, NY : Springer New York : Imprint: Springer, 2013Descripción: xvI, 484 páginas 202 ilustraciones, 95 ilustraciones en color. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781461470526
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • Q334-342
Recursos en línea:
Contenidos:
Introduction -- Abstraction in Different Disciplines -- Abstraction in Artificial Intelligence -- Definitions of Abstraction -- Boundaries of Abstraction -- The KRA Model -- Abstraction Operators and Design Patterns -- Properties of the KRA Model -- Abstraction in Machine Learning -- Simplicity, Complex Systems, and Abstraction -- Case Studies and Applications -- Discussion -- Conclusion.
Resumen: Abstraction is a fundamental mechanism underlying both human and artificial perception, representation of knowledge, reasoning and learning. This mechanism plays a crucial role in many disciplines, notably Computer Programming, Natural and Artificial Vision, Complex Systems, Artificial Intelligence and Machine Learning, Art, and Cognitive Sciences. This book first provides the reader with an overview of the notions of abstraction proposed in various disciplines by comparing both commonalities and differences.  After discussing the characterizing properties of abstraction, a formal model, the KRA model, is presented to capture them. This model makes the notion of abstraction easily applicable by means of the introduction of a set of abstraction operators and abstraction patterns, reusable across different domains and applications. It is the impact of abstraction in Artificial Intelligence, Complex Systems and Machine Learning which creates the core of the book.  A general framework, based on the KRA model, is presented, and its pragmatic power is illustrated with three case studies: Model-based diagnosis, Cartographic  Generalization, and learning Hierarchical Hidden Markov Models.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Introduction -- Abstraction in Different Disciplines -- Abstraction in Artificial Intelligence -- Definitions of Abstraction -- Boundaries of Abstraction -- The KRA Model -- Abstraction Operators and Design Patterns -- Properties of the KRA Model -- Abstraction in Machine Learning -- Simplicity, Complex Systems, and Abstraction -- Case Studies and Applications -- Discussion -- Conclusion.

Abstraction is a fundamental mechanism underlying both human and artificial perception, representation of knowledge, reasoning and learning. This mechanism plays a crucial role in many disciplines, notably Computer Programming, Natural and Artificial Vision, Complex Systems, Artificial Intelligence and Machine Learning, Art, and Cognitive Sciences. This book first provides the reader with an overview of the notions of abstraction proposed in various disciplines by comparing both commonalities and differences.  After discussing the characterizing properties of abstraction, a formal model, the KRA model, is presented to capture them. This model makes the notion of abstraction easily applicable by means of the introduction of a set of abstraction operators and abstraction patterns, reusable across different domains and applications. It is the impact of abstraction in Artificial Intelligence, Complex Systems and Machine Learning which creates the core of the book.  A general framework, based on the KRA model, is presented, and its pragmatic power is illustrated with three case studies: Model-based diagnosis, Cartographic  Generalization, and learning Hierarchical Hidden Markov Models.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha