TEST - Catálogo BURRF
   

Multi-scale Analysis for Random Quantum Systems with Interaction / by Victor Chulaevsky, Yuri Suhov.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Progress in Mathematical Physics ; 65Editor: New York, NY : Springer New York : Imprint: Birkhäuser, 2014Descripción: xI, 238 páginas 5 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781461482260
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA319-329.9
Recursos en línea:
Contenidos:
Preface -- Part I Single-particle Localisation -- A Brief History of Anderson Localization.- Single-Particle MSA Techniques -- Part II Multi-particle Localization -- Multi-particle Eigenvalue Concentration Bounds -- Multi-particle MSA Techniques -- References -- Index.
Resumen: The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction  presents the progress that had been recently achieved in this area.   The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd.   This book includes the following cutting-edge features: * an introduction to the state-of-the-art single-particle localization theory * an extensive discussion of relevant technical aspects of the localization theory * a thorough comparison of the multi-particle model with its single-particle counterpart * a self-contained rigorous derivation of both spectral and dynamical localization in the multi-particle tight-binding Anderson model.   Required mathematical background for the book includes a knowledge of functional calculus, spectral theory (essentially reduced to the case of finite matrices) and basic probability theory. This is an excellent text for a year-long graduate course or seminar in mathematical physics. It also can serve as a standard reference for specialists.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preface -- Part I Single-particle Localisation -- A Brief History of Anderson Localization.- Single-Particle MSA Techniques -- Part II Multi-particle Localization -- Multi-particle Eigenvalue Concentration Bounds -- Multi-particle MSA Techniques -- References -- Index.

The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction  presents the progress that had been recently achieved in this area.   The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd.   This book includes the following cutting-edge features: * an introduction to the state-of-the-art single-particle localization theory * an extensive discussion of relevant technical aspects of the localization theory * a thorough comparison of the multi-particle model with its single-particle counterpart * a self-contained rigorous derivation of both spectral and dynamical localization in the multi-particle tight-binding Anderson model.   Required mathematical background for the book includes a knowledge of functional calculus, spectral theory (essentially reduced to the case of finite matrices) and basic probability theory. This is an excellent text for a year-long graduate course or seminar in mathematical physics. It also can serve as a standard reference for specialists.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha