TEST - Catálogo BURRF
   

Fault-tolerant Flight Control and Guidance Systems : Practical Methods for Small Unmanned Aerial Vehicles / by Guillaume J.J. Ducard.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Advances in Industrial ControlEditor: London : Springer London, 2009Descripción: recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781848825611
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • TL1-483
Recursos en línea:
Contenidos:
Review -- Nonlinear Aircraft Model -- Nonlinear Fault Detection and Isolation System -- Control Allocation -- Nonlinear Control Design -- Autopilot for the Longitudinal Motion -- Autopilot for the Lateral Motion -- Reconfigurable Guidance System -- Evaluation of the Reduction in the Performance of a UAV -- Conclusions and Outlook.
Resumen: Unmanned aerial vehicles (UAVs) offer an incomparable means of gathering intelligence and carrying out missions without needing an onboard human pilot. The benefits are considerable in terms of cost, efficiency, and reduced pilot risk. In order to complete a mission efficiently and with a high level of safety and security, the following key design points must be met: • the flight control system must be robust against the aircraft’s model uncertainties and external disturbances; • an efficient fault detection and isolation (FDI) system should be capable of monitoring the health of the aircraft; and • the flight control and guidance system should be reconfigurable depending on actuator fault occurrence or aircraft damage, and should be able to avoid obstacles. Fault-tolerant Flight Control and Guidance Systems addresses all of these aspects with a practical approach following three main requirements: being applicable in real-time; highly computationally efficient; and modular. The text provides: • an overview of fault-tolerant flight control techniques; • the necessary equations for the modeling of small UAVs; • a complete nonlinear FDI system based on extended Kalman filters; and • a nonlinear flight control and guidance system. The book is written in a didactic style with many figures and diagrams making it suitable not only for academic researchers and practicing engineers but also graduate students working in the fields of fault detection techniques and the automatic control of UAVs.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Review -- Nonlinear Aircraft Model -- Nonlinear Fault Detection and Isolation System -- Control Allocation -- Nonlinear Control Design -- Autopilot for the Longitudinal Motion -- Autopilot for the Lateral Motion -- Reconfigurable Guidance System -- Evaluation of the Reduction in the Performance of a UAV -- Conclusions and Outlook.

Unmanned aerial vehicles (UAVs) offer an incomparable means of gathering intelligence and carrying out missions without needing an onboard human pilot. The benefits are considerable in terms of cost, efficiency, and reduced pilot risk. In order to complete a mission efficiently and with a high level of safety and security, the following key design points must be met: • the flight control system must be robust against the aircraft’s model uncertainties and external disturbances; • an efficient fault detection and isolation (FDI) system should be capable of monitoring the health of the aircraft; and • the flight control and guidance system should be reconfigurable depending on actuator fault occurrence or aircraft damage, and should be able to avoid obstacles. Fault-tolerant Flight Control and Guidance Systems addresses all of these aspects with a practical approach following three main requirements: being applicable in real-time; highly computationally efficient; and modular. The text provides: • an overview of fault-tolerant flight control techniques; • the necessary equations for the modeling of small UAVs; • a complete nonlinear FDI system based on extended Kalman filters; and • a nonlinear flight control and guidance system. The book is written in a didactic style with many figures and diagrams making it suitable not only for academic researchers and practicing engineers but also graduate students working in the fields of fault detection techniques and the automatic control of UAVs.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha