TEST - Catálogo BURRF
   

Group Identities on Units and Symmetric Units of Group Rings / by Gregory T. Lee.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Algebra and Applications ; 12Editor: London : Springer London, 2010Descripción: xii, 196 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781849965040
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA251.5
Recursos en línea:
Contenidos:
Group Identities on Units of Group Rings -- Group Identities on Symmetric Units -- Lie Identities on Symmetric Elements -- Nilpotence of and.
Resumen: Let FG be the group ring of a group G over a field F. Write U(FG) for the group of units of FG. It is an important problem to determine the conditions under which U(FG) satisfies a group identity. In the mid 1990s, a conjecture of Hartley was verified, namely, if U(FG) satisfies a group identity, and G is torsion, then FG satisfies a polynomial identity. Necessary and sufficient conditions for U(FG) to satisfy a group identity soon followed. Since the late 1990s, many papers have been devoted to the study of the symmetric units; that is, those units u satisfying u* = u, where * is the involution on FG defined by sending each element of G to its inverse. The conditions under which these symmetric units satisfy a group identity have now been determined. This book presents these results for arbitrary group identities, as well as the conditions under which the unit group or the set of symmetric units satisfies several particular group identities of interest.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Group Identities on Units of Group Rings -- Group Identities on Symmetric Units -- Lie Identities on Symmetric Elements -- Nilpotence of and.

Let FG be the group ring of a group G over a field F. Write U(FG) for the group of units of FG. It is an important problem to determine the conditions under which U(FG) satisfies a group identity. In the mid 1990s, a conjecture of Hartley was verified, namely, if U(FG) satisfies a group identity, and G is torsion, then FG satisfies a polynomial identity. Necessary and sufficient conditions for U(FG) to satisfy a group identity soon followed. Since the late 1990s, many papers have been devoted to the study of the symmetric units; that is, those units u satisfying u* = u, where * is the involution on FG defined by sending each element of G to its inverse. The conditions under which these symmetric units satisfy a group identity have now been determined. This book presents these results for arbitrary group identities, as well as the conditions under which the unit group or the set of symmetric units satisfies several particular group identities of interest.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha