TEST - Catálogo BURRF
   

Fields and Galois Theory / by John M. Howie.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Springer Undergraduate Mathematics SeriesEditor: London : Springer London, 2006Descripción: x, 225 páginas 22 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781846281815
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA150-272
Recursos en línea:
Contenidos:
Rings and Fields -- Integral Domains and Polynomials -- Field Extensions -- Applications to Geometry -- Splitting Fields -- Finite Fields -- The Galois Group -- Equations and Groups -- Some Group Theory -- Groups and Equations -- Regular Polygons -- Solutions.
Resumen: The pioneering work of Abel and Galois in the early nineteenth century demonstrated that the long-standing quest for a solution of quintic equations by radicals was fruitless: no formula can be found. The techniques they used were, in the end, more important than the resolution of a somewhat esoteric problem, for they were the genesis of modern abstract algebra. This book provides a gentle introduction to Galois theory suitable for third- and fourth-year undergraduates and beginning graduates. The approach is unashamedly unhistorical: it uses the language and techniques of abstract algebra to express complex arguments in contemporary terms. Thus the insolubility of the quintic by radicals is linked to the fact that the alternating group of degree 5 is simple - which is assuredly not the way Galois would have expressed the connection. Topics covered include: rings and fields integral domains and polynomials field extensions and splitting fields applications to geometry finite fields the Galois group equations Group theory features in many of the arguments, and is fully explained in the text. Clear and careful explanations are backed up with worked examples and more than 100 exercises, for which full solutions are provided.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Rings and Fields -- Integral Domains and Polynomials -- Field Extensions -- Applications to Geometry -- Splitting Fields -- Finite Fields -- The Galois Group -- Equations and Groups -- Some Group Theory -- Groups and Equations -- Regular Polygons -- Solutions.

The pioneering work of Abel and Galois in the early nineteenth century demonstrated that the long-standing quest for a solution of quintic equations by radicals was fruitless: no formula can be found. The techniques they used were, in the end, more important than the resolution of a somewhat esoteric problem, for they were the genesis of modern abstract algebra. This book provides a gentle introduction to Galois theory suitable for third- and fourth-year undergraduates and beginning graduates. The approach is unashamedly unhistorical: it uses the language and techniques of abstract algebra to express complex arguments in contemporary terms. Thus the insolubility of the quintic by radicals is linked to the fact that the alternating group of degree 5 is simple - which is assuredly not the way Galois would have expressed the connection. Topics covered include: rings and fields integral domains and polynomials field extensions and splitting fields applications to geometry finite fields the Galois group equations Group theory features in many of the arguments, and is fully explained in the text. Clear and careful explanations are backed up with worked examples and more than 100 exercises, for which full solutions are provided.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha