TEST - Catálogo BURRF
   

Distances and Similarities in Intuitionistic Fuzzy Sets / by Eulalia Szmidt.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Studies in Fuzziness and Soft Computing ; 307Editor: Cham : Springer International Publishing : Imprint: Springer, 2014Descripción: viii, 148 páginas 35 ilustraciones, 17 ilustraciones en color. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783319016405
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • Q342
Recursos en línea:
Contenidos:
Intuitionistic Fuzzy Sets as a Generalization of Fuzzy Sets -- Distances -- Similarity Measures between Intuitionistic Fuzzy Sets.
Resumen: This book presents the state-of-the-art in theory and practice regarding similarity and distance measures for intuitionistic fuzzy sets. Quantifying similarity and distances is crucial for many applications, e.g. data mining, machine learning, decision making, and control. The work provides readers with a comprehensive set of theoretical concepts and practical tools for both defining and determining similarity between intuitionistic fuzzy sets. It describes an automatic algorithm for deriving intuitionistic fuzzy sets from data, which can aid in the analysis of information in large databases. The book also discusses other important applications, e.g. the use of similarity measures to evaluate the extent of agreement between experts in the context of decision making.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Intuitionistic Fuzzy Sets as a Generalization of Fuzzy Sets -- Distances -- Similarity Measures between Intuitionistic Fuzzy Sets.

This book presents the state-of-the-art in theory and practice regarding similarity and distance measures for intuitionistic fuzzy sets. Quantifying similarity and distances is crucial for many applications, e.g. data mining, machine learning, decision making, and control. The work provides readers with a comprehensive set of theoretical concepts and practical tools for both defining and determining similarity between intuitionistic fuzzy sets. It describes an automatic algorithm for deriving intuitionistic fuzzy sets from data, which can aid in the analysis of information in large databases. The book also discusses other important applications, e.g. the use of similarity measures to evaluate the extent of agreement between experts in the context of decision making.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha