TEST - Catálogo BURRF
   

Broadband Direct RF Digitization Receivers / by Olivier Jamin.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Analog Circuits and Signal Processing ; 121Editor: Cham : Springer International Publishing : Imprint: Springer, 2014Descripción: xvI, 162 páginas 166 ilustraciones, 68 ilustraciones en color. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783319011509
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • TK7888.4
Recursos en línea:
Contenidos:
RF Receiver Architecture State-of-the-Art -- System-Level Design Framework for Direct RF Digitization Receivers -- Application to the System Design of a Multi-Channel Cable Receiver -- Realization & Measurements -- Conclusions & Perspectives.
Resumen: This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm CMOS processes, together with the block and system-level measurement results. Readers will benefit from the techniques presented, which are highly competitive, both in terms of cost and RF performance, while drastically reducing power consumption.  ·         Provides system-level analysis of direct RF sampling & digitization receivers, from the antenna to the digital channel selection; ·         Includes analysis of broadband non-linearity, applicable for low-pass and band-pass sampling strategies; Describes system-level design of an application-optimized signal conditioner, including a single-inductance multi-slope programmable RF amplitude equalizer, together with its control algorithm and a mixed-signal AGC loop combining RMS and peak detection.  
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

RF Receiver Architecture State-of-the-Art -- System-Level Design Framework for Direct RF Digitization Receivers -- Application to the System Design of a Multi-Channel Cable Receiver -- Realization & Measurements -- Conclusions & Perspectives.

This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm CMOS processes, together with the block and system-level measurement results. Readers will benefit from the techniques presented, which are highly competitive, both in terms of cost and RF performance, while drastically reducing power consumption.  ·         Provides system-level analysis of direct RF sampling & digitization receivers, from the antenna to the digital channel selection; ·         Includes analysis of broadband non-linearity, applicable for low-pass and band-pass sampling strategies; Describes system-level design of an application-optimized signal conditioner, including a single-inductance multi-slope programmable RF amplitude equalizer, together with its control algorithm and a mixed-signal AGC loop combining RMS and peak detection.  

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha