TEST - Catálogo BURRF
   

Approximate Commutative Algebra / edited by Lorenzo Robbiano, John Abbott.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Texts and Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, AustriaEditor: Vienna : Springer Vienna, 2010Descripción: xiv, 227 páginas 15 ilustraciones, 4 ilustraciones en color. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783211993149
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA564-609
Recursos en línea:
Contenidos:
From Oil Fields to Hilbert Schemes -- Numerical Decomposition of the Rank-Deficiency Set of a Matrix of Multivariate Polynomials -- Towards Geometric Completion of Differential Systems by Points -- Geometric Involutive Bases and Applications to Approximate Commutative Algebra -- Regularization and Matrix Computation in Numerical Polynomial Algebra -- Ideal Interpolation: Translations to and from Algebraic Geometry -- An Introduction to Regression and Errors in Variables from an Algebraic Viewpoint -- ApCoA = Embedding Commutative Algebra into Analysis -- Exact Certification in Global Polynomial Optimization Via Rationalizing Sums-Of-Squares.
Resumen: Approximate Commutative Algebra is an emerging field of research which endeavours to bridge the gap between traditional exact Computational Commutative Algebra and approximate numerical computation. The last 50 years have seen enormous progress in the realm of exact Computational Commutative Algebra, and given the importance of polynomials in scientific modelling, it is very natural to want to extend these ideas to handle approximate, empirical data deriving from physical measurements of phenomena in the real world. In this volume nine contributions from established researchers describe various approaches to tackling a variety of problems arising in Approximate Commutative Algebra.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

From Oil Fields to Hilbert Schemes -- Numerical Decomposition of the Rank-Deficiency Set of a Matrix of Multivariate Polynomials -- Towards Geometric Completion of Differential Systems by Points -- Geometric Involutive Bases and Applications to Approximate Commutative Algebra -- Regularization and Matrix Computation in Numerical Polynomial Algebra -- Ideal Interpolation: Translations to and from Algebraic Geometry -- An Introduction to Regression and Errors in Variables from an Algebraic Viewpoint -- ApCoA = Embedding Commutative Algebra into Analysis -- Exact Certification in Global Polynomial Optimization Via Rationalizing Sums-Of-Squares.

Approximate Commutative Algebra is an emerging field of research which endeavours to bridge the gap between traditional exact Computational Commutative Algebra and approximate numerical computation. The last 50 years have seen enormous progress in the realm of exact Computational Commutative Algebra, and given the importance of polynomials in scientific modelling, it is very natural to want to extend these ideas to handle approximate, empirical data deriving from physical measurements of phenomena in the real world. In this volume nine contributions from established researchers describe various approaches to tackling a variety of problems arising in Approximate Commutative Algebra.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha