TEST - Catálogo BURRF
   

Algorithms in Invariant Theory / by Bernd Sturmfels.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Texts and Monographs in Symbolic ComputationEditor: Vienna : Springer Vienna, 2008Edición: Second editionDescripción: vii, 197 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783211774175
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA8.9-QA10.3
Recursos en línea:
Contenidos:
Invariant theory of finite groups -- Bracket algebra and projective geometry -- Invariants of the general linear group.
Resumen: J. Kung and G.-C. Rota, in their 1984 paper, write: “Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics”. The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this “classical and new” area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Invariant theory of finite groups -- Bracket algebra and projective geometry -- Invariants of the general linear group.

J. Kung and G.-C. Rota, in their 1984 paper, write: “Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics”. The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this “classical and new” area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha