TEST - Catálogo BURRF
   

Quantitative Arithmetic of Projective Varieties / by Timothy D. Browning.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Progress in Mathematics ; 277Editor: Basel : Birkhäuser Basel, 2009Descripción: recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783034601290
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA241-247.5
Recursos en línea:
Contenidos:
The Manin conjectures -- The dimension growth conjecture -- Uniform bounds for curves and surfaces -- A1 del Pezzo surface of degree 6 -- D4 del Pezzo surface of degree 3 -- Siegel’s lemma and non-singular surfaces -- The Hardy—Littlewood circle method.
Resumen: This monograph is concerned with counting rational points of bounded height on projective algebraic varieties. This is a relatively young topic, whose exploration has already uncovered a rich seam of mathematics situated at the interface of analytic number theory and Diophantine geometry. The goal of the book is to give a systematic account of the field with an emphasis on the role played by analytic number theory in its development. Among the themes discussed in detail are * the Manin conjecture for del Pezzo surfaces; * Heath-Brown's dimension growth conjecture; and * the Hardy-Littlewood circle method. Readers of this monograph will be rapidly brought into contact with a spectrum of problems and conjectures that are central to this fertile subject area.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

The Manin conjectures -- The dimension growth conjecture -- Uniform bounds for curves and surfaces -- A1 del Pezzo surface of degree 6 -- D4 del Pezzo surface of degree 3 -- Siegel’s lemma and non-singular surfaces -- The Hardy—Littlewood circle method.

This monograph is concerned with counting rational points of bounded height on projective algebraic varieties. This is a relatively young topic, whose exploration has already uncovered a rich seam of mathematics situated at the interface of analytic number theory and Diophantine geometry. The goal of the book is to give a systematic account of the field with an emphasis on the role played by analytic number theory in its development. Among the themes discussed in detail are * the Manin conjecture for del Pezzo surfaces; * Heath-Brown's dimension growth conjecture; and * the Hardy-Littlewood circle method. Readers of this monograph will be rapidly brought into contact with a spectrum of problems and conjectures that are central to this fertile subject area.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha