TEST - Catálogo BURRF
   

Domain Decomposition Methods — Algorithms and Theory / by Andrea Toselli, Olof B. Widlund.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Springer Series in Computational Mathematics ; 34Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: xv, 450 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540266624
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA71-90
Recursos en línea:
Contenidos:
Abstract Theory of Schwarz Methods -- Two-Level Overlapping Methods -- Substructuring Methods: Introduction -- Primal Iterative Substructuring Methods -- Neumann-Neumann and FETI Methods -- Spectral Element Methods -- Linear Elasticity -- Preconditioners for Saddle Point Problems -- Problems in H (div ; ?) and H (curl ; ?) -- Indefinite and Nonsymmetric Problems -- Elliptic Problems and Sobolev Spaces -- Galerkin Approximations -- Solution of Algebraic Linear Systems.
Resumen: The purpose of this text is to offer a comprehensive and self-contained presentation of some of the most successful and popular domain decomposition preconditioners for finite and spectral element approximations of partial differential equations. Strong emphasis is placed on both algorithmic and mathematical aspects. Some important methods such FETI and balancing Neumann-Neumann methods and algorithms for spectral element methods, not treated previously in any monograph, are covered in detail. Winner of the 2005 Award for Excellence in Professional and Scholarly Publishing - Mathematics/Statistics - of the Association of American Publishers
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Abstract Theory of Schwarz Methods -- Two-Level Overlapping Methods -- Substructuring Methods: Introduction -- Primal Iterative Substructuring Methods -- Neumann-Neumann and FETI Methods -- Spectral Element Methods -- Linear Elasticity -- Preconditioners for Saddle Point Problems -- Problems in H (div ; ?) and H (curl ; ?) -- Indefinite and Nonsymmetric Problems -- Elliptic Problems and Sobolev Spaces -- Galerkin Approximations -- Solution of Algebraic Linear Systems.

The purpose of this text is to offer a comprehensive and self-contained presentation of some of the most successful and popular domain decomposition preconditioners for finite and spectral element approximations of partial differential equations. Strong emphasis is placed on both algorithmic and mathematical aspects. Some important methods such FETI and balancing Neumann-Neumann methods and algorithms for spectral element methods, not treated previously in any monograph, are covered in detail. Winner of the 2005 Award for Excellence in Professional and Scholarly Publishing - Mathematics/Statistics - of the Association of American Publishers

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha