TEST - Catálogo BURRF
   

Estimation in Conditionally Heteroscedastic Time Series Models / by Daniel Straumann.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Statistics ; 181Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: xvI, 228 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540269786
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA276-280
Recursos en línea:
Contenidos:
Some Mathematical Tools -- Financial Time Series: Facts and Models -- Parameter Estimation: An Overview -- Quasi Maximum Likelihood Estimation in Conditionally Heteroscedastic Time Series Models: A Stochastic Recurrence Equations Approach -- Maximum Likelihood Estimation in Conditionally Heteroscedastic Time Series Models -- Quasi Maximum Likelihood Estimation in a Generalized Conditionally Heteroscedastic Time Series Model with Heavy—tailed Innovations -- Whittle Estimation in a Heavy—tailed GARCH(1,1) Model.
Resumen: In his seminal 1982 paper, Robert F. Engle described a time series model with a time-varying volatility. Engle showed that this model, which he called ARCH (autoregressive conditionally heteroscedastic), is well-suited for the description of economic and financial price. Nowadays ARCH has been replaced by more general and more sophisticated models, such as GARCH (generalized autoregressive heteroscedastic). This monograph concentrates on mathematical statistical problems associated with fitting conditionally heteroscedastic time series models to data. This includes the classical statistical issues of consistency and limiting distribution of estimators. Particular attention is addressed to (quasi) maximum likelihood estimation and misspecified models, along to phenomena due to heavy-tailed innovations. The used methods are based on techniques applied to the analysis of stochastic recurrence equations. Proofs and arguments are given wherever possible in full mathematical rigour. Moreover, the theory is illustrated by examples and simulation studies.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Some Mathematical Tools -- Financial Time Series: Facts and Models -- Parameter Estimation: An Overview -- Quasi Maximum Likelihood Estimation in Conditionally Heteroscedastic Time Series Models: A Stochastic Recurrence Equations Approach -- Maximum Likelihood Estimation in Conditionally Heteroscedastic Time Series Models -- Quasi Maximum Likelihood Estimation in a Generalized Conditionally Heteroscedastic Time Series Model with Heavy—tailed Innovations -- Whittle Estimation in a Heavy—tailed GARCH(1,1) Model.

In his seminal 1982 paper, Robert F. Engle described a time series model with a time-varying volatility. Engle showed that this model, which he called ARCH (autoregressive conditionally heteroscedastic), is well-suited for the description of economic and financial price. Nowadays ARCH has been replaced by more general and more sophisticated models, such as GARCH (generalized autoregressive heteroscedastic). This monograph concentrates on mathematical statistical problems associated with fitting conditionally heteroscedastic time series models to data. This includes the classical statistical issues of consistency and limiting distribution of estimators. Particular attention is addressed to (quasi) maximum likelihood estimation and misspecified models, along to phenomena due to heavy-tailed innovations. The used methods are based on techniques applied to the analysis of stochastic recurrence equations. Proofs and arguments are given wherever possible in full mathematical rigour. Moreover, the theory is illustrated by examples and simulation studies.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha