TEST - Catálogo BURRF
   

Signal Extraction : Efficient Estimation, ‘Unit Root'-Tests and Early Detection of Turning Points / by Marc Wildi.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Economics and Mathematical Systems ; 547Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: xI, 279 páginas 80 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540269168
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA276-280
Recursos en línea:
Contenidos:
Theory -- Model-Based Approaches -- QMP-ZPC Filters -- The Periodogram -- Direct Filter Approach (DFA) -- Finite Sample Problems and Regularity -- Empirical Results -- Empirical Comparisons : Mean Square Performance -- Empirical Comparisons : Turning Point Detection -- Conclusion.
Resumen: The book provides deep insights into the signal extraction problem - especially at the boundary of a sample, where asymmetric filters must be used - and how to solve it optimally. The traditional model-based approach (TRAMO/SEATS or X-12-ARIMA) is an inefficient estimation method because it relies on one-step ahead forecasting performances (of a model) whereas the signal extraction problem implicitly requires good multi-step ahead forecasts also. Unit roots are important properties of the input signal because they generate a set of constraints for the best extraction filter. Since traditional tests essentially rely on one-step ahead forecasting performances, new tests are presented here which implicitly account for multi-step ahead forecasting performances too. The gain in efficiency obtained by the new estimation method is analyzed in great detail, using simulated data as well as 'real world' time series.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Theory -- Model-Based Approaches -- QMP-ZPC Filters -- The Periodogram -- Direct Filter Approach (DFA) -- Finite Sample Problems and Regularity -- Empirical Results -- Empirical Comparisons : Mean Square Performance -- Empirical Comparisons : Turning Point Detection -- Conclusion.

The book provides deep insights into the signal extraction problem - especially at the boundary of a sample, where asymmetric filters must be used - and how to solve it optimally. The traditional model-based approach (TRAMO/SEATS or X-12-ARIMA) is an inefficient estimation method because it relies on one-step ahead forecasting performances (of a model) whereas the signal extraction problem implicitly requires good multi-step ahead forecasts also. Unit roots are important properties of the input signal because they generate a set of constraints for the best extraction filter. Since traditional tests essentially rely on one-step ahead forecasting performances, new tests are presented here which implicitly account for multi-step ahead forecasting performances too. The gain in efficiency obtained by the new estimation method is analyzed in great detail, using simulated data as well as 'real world' time series.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha