TEST - Catálogo BURRF
   

Index and Stability in Bimatrix Games : A Geometric-Combinatorial Approach / by Arndt Schemde.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Economics and Mathematical Systems ; 560Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: x, 151 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540291022
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • HB144
Recursos en línea:
Contenidos:
Eqilibrium Components with Arbitrary Index -- A Reformulation of the Index for Equilibria in Bimatrix Games -- Sperner’s Lemma and Labelling Theorems -- A Strategic Characterisation of the Index -- Outside Option Equilibrium Components -- Index Zero and Hyperstability.
Resumen: The index of an equilibrium in a game gives information about the "stability" of the equilibrium, for example with respect to game dynamics. Unfortunately, index theory is often very technical. This book presents a new geometric construction that visualises the index in an intuitive way. For example, a 3×n game, for any n, can be represented by a figure in the plane, from which one can read off any equilibrium, and its index as a geometric orientation. With this insight, the index can be characterised in strategic terms alone. Moreover, certain "hyperstable" equilibrium components are seen to have nonzero index. The construction gives an elementary proof that two-player games have a Nash equilibrium, and, in an unusual direction, the powerful fixed point theorem of Brouwer.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Eqilibrium Components with Arbitrary Index -- A Reformulation of the Index for Equilibria in Bimatrix Games -- Sperner’s Lemma and Labelling Theorems -- A Strategic Characterisation of the Index -- Outside Option Equilibrium Components -- Index Zero and Hyperstability.

The index of an equilibrium in a game gives information about the "stability" of the equilibrium, for example with respect to game dynamics. Unfortunately, index theory is often very technical. This book presents a new geometric construction that visualises the index in an intuitive way. For example, a 3×n game, for any n, can be represented by a figure in the plane, from which one can read off any equilibrium, and its index as a geometric orientation. With this insight, the index can be characterised in strategic terms alone. Moreover, certain "hyperstable" equilibrium components are seen to have nonzero index. The construction gives an elementary proof that two-player games have a Nash equilibrium, and, in an unusual direction, the powerful fixed point theorem of Brouwer.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha