TEST - Catálogo BURRF
   

Riemannian Geometry and Geometric Analysis / by Jürgen Jost.

Por: Colaborador(es): Tipo de material: TextoTextoSeries UniversitextEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Edición: Fourth EditionDescripción: xiii, 566 páginas 14 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540288916
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA641-670
Recursos en línea:
Contenidos:
Foundational Material -- De Rham Cohomology and Harmonic Differential Forms -- Parallel Transport, Connections, and Covariant Derivatives -- Geodesics and Jacobi Fields -- Symmetric Spaces and Kähler Manifolds -- Morse Theory and Floer Homology -- Variational Problems from Quantum Field Theory -- Harmonic Maps.
Resumen: This established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research. Besides several smaller additions, reorganizations, corrections, and a systematic bibliography, the main new features of the 4th edition are a systematic introduction to Kähler geometry and the presentation of additional techniques from geometric analysis. From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. The author focuses on using analytic methods in the study of some fundamental theorems in Riemannian geometry, e.g., the Hodge theorem, the Rauch comparison theorem, the Lyusternik and Fet theorem and the existence of harmonic mappings. With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome. [..] The book is made more interesting by the perspectives in various sections." Math. Reviews
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Foundational Material -- De Rham Cohomology and Harmonic Differential Forms -- Parallel Transport, Connections, and Covariant Derivatives -- Geodesics and Jacobi Fields -- Symmetric Spaces and Kähler Manifolds -- Morse Theory and Floer Homology -- Variational Problems from Quantum Field Theory -- Harmonic Maps.

This established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research. Besides several smaller additions, reorganizations, corrections, and a systematic bibliography, the main new features of the 4th edition are a systematic introduction to Kähler geometry and the presentation of additional techniques from geometric analysis. From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. The author focuses on using analytic methods in the study of some fundamental theorems in Riemannian geometry, e.g., the Hodge theorem, the Rauch comparison theorem, the Lyusternik and Fet theorem and the existence of harmonic mappings. With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome. [..] The book is made more interesting by the perspectives in various sections." Math. Reviews

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha