TEST - Catálogo BURRF
   

Foundations of Learning Classifier Systems / edited by Larry Bull, Tim Kovacs.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Studies in Fuzziness and Soft Computing ; 183Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: vI, 336 páginas 98 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540323969
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • TA329-348
Recursos en línea:
Contenidos:
Section 1 – Rule Discovery. Population Dynamics of Genetic Algorithms. Approximating Value Functions in Classifier Systems. Two Simple Learning Classifier Systems. Computational Complexity of the XCS Classifier System. An Analysis of Continuous-Valued Representations for Learning Classifier Systems -- Section 2 – Credit Assignment. Reinforcement Learning: a Brief Overview. A Mathematical Framework for Studying Learning Classifier Systems. Rule Fitness and Pathology in Learning Classifier Systems. Learning Classifier Systems: A Reinforcement Learning Perspective. Learning Classifier Systems with Convergence and Generalization -- Section 3 – Problem Characterization. On the Classification of Maze Problems. What Makes a Problem Hard?.
Resumen: This volume brings together recent theoretical work in Learning Classifier Systems (LCS), which is a Machine Learning technique combining Genetic Algorithms and Reinforcement Learning. It includes self-contained background chapters on related fields (reinforcement learning and evolutionary computation) tailored for a classifier systems audience and written by acknowledged authorities in their area - as well as a relevant historical original work by John Holland.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Section 1 – Rule Discovery. Population Dynamics of Genetic Algorithms. Approximating Value Functions in Classifier Systems. Two Simple Learning Classifier Systems. Computational Complexity of the XCS Classifier System. An Analysis of Continuous-Valued Representations for Learning Classifier Systems -- Section 2 – Credit Assignment. Reinforcement Learning: a Brief Overview. A Mathematical Framework for Studying Learning Classifier Systems. Rule Fitness and Pathology in Learning Classifier Systems. Learning Classifier Systems: A Reinforcement Learning Perspective. Learning Classifier Systems with Convergence and Generalization -- Section 3 – Problem Characterization. On the Classification of Maze Problems. What Makes a Problem Hard?.

This volume brings together recent theoretical work in Learning Classifier Systems (LCS), which is a Machine Learning technique combining Genetic Algorithms and Reinforcement Learning. It includes self-contained background chapters on related fields (reinforcement learning and evolutionary computation) tailored for a classifier systems audience and written by acknowledged authorities in their area - as well as a relevant historical original work by John Holland.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha