TEST - Catálogo BURRF
   

Evolutionary Computation in Data Mining / edited by Ashish Ghosh, Lakhmi C. Jain.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Studies in Fuzziness and Soft Computing ; 163Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: xvii, 265 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540323587
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • TA329-348
Recursos en línea:
Contenidos:
Evolutionary Algorithms for Data Mining and Knowledge Discovery -- Strategies for Scaling Up Evolutionary Instance Reduction Algorithms for Data Mining -- GAP: Constructing and Selecting Features with Evolutionary Computing -- Multi-Agent Data Mining using Evolutionary Computing -- A Rule Extraction System with Class-Dependent Features -- Knowledge Discovery in Data Mining via an Evolutionary Algorithm -- Diversity and Neuro-Ensemble -- Unsupervised Niche Clustering: Discovering an Unknown Number of Clusters in Noisy Data Sets -- Evolutionary Computation in Intelligent Network Management -- Genetic Programming in Data Mining for Drug Discovery -- Microarray Data Mining with Evolutionary Computation -- An Evolutionary Modularized Data Mining Mechanism for Financial Distress Forecasts.
Resumen: This carefully edited book reflects and advances the state of the art in the area of Data Mining and Knowledge Discovery with Evolutionary Algorithms. It emphasizes the utility of different evolutionary computing tools to various facets of knowledge discovery from databases, ranging from theoretical analysis to real-life applications. "Evolutionary Computation in Data Mining" provides a balanced mixture of theory, algorithms and applications in a cohesive manner, and demonstrates how the different tools of evolutionary computation can be used for solving real-life problems in data mining and bioinformatics.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Evolutionary Algorithms for Data Mining and Knowledge Discovery -- Strategies for Scaling Up Evolutionary Instance Reduction Algorithms for Data Mining -- GAP: Constructing and Selecting Features with Evolutionary Computing -- Multi-Agent Data Mining using Evolutionary Computing -- A Rule Extraction System with Class-Dependent Features -- Knowledge Discovery in Data Mining via an Evolutionary Algorithm -- Diversity and Neuro-Ensemble -- Unsupervised Niche Clustering: Discovering an Unknown Number of Clusters in Noisy Data Sets -- Evolutionary Computation in Intelligent Network Management -- Genetic Programming in Data Mining for Drug Discovery -- Microarray Data Mining with Evolutionary Computation -- An Evolutionary Modularized Data Mining Mechanism for Financial Distress Forecasts.

This carefully edited book reflects and advances the state of the art in the area of Data Mining and Knowledge Discovery with Evolutionary Algorithms. It emphasizes the utility of different evolutionary computing tools to various facets of knowledge discovery from databases, ranging from theoretical analysis to real-life applications. "Evolutionary Computation in Data Mining" provides a balanced mixture of theory, algorithms and applications in a cohesive manner, and demonstrates how the different tools of evolutionary computation can be used for solving real-life problems in data mining and bioinformatics.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha