TEST - Catálogo BURRF
   

Hybrid Estimation of Complex Systems / by Michael W. Hofbaur.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Control and Information Science ; 319Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: xIx, 148 páginas 69 ilustraciones Also available online. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540315872
Formatos físicos adicionales: Edición impresa:: Sin títuloRecursos en línea:
Contenidos:
Hybrid Estimation at a Glance -- Probabilistic Hybrid Automata -- Hybrid Estimation -- Case Studies -- Conclusion.
Resumen: This monograph provides a tool-set for hybrid estimation that can successfully monitor the behavior of complex artifacts with a large number of possible operational and failure modes such as production plants, automotive or aeronautic systems, and autonomous robots. For this purpose, ideas from the fields of System Theory and Artificial Intelligence are taken and hybrid estimation is reformulated as a search problem. This allows to focus the estimation onto highly probably operational modes, without missing symptoms that might be hidden among the noise in the system. Additionally a novel approach to continue hybrid estimation in the presence of unknown behavioral modes and to automate system analysis and synthesis tasks for on-line operation are presented. This leads to a flexible model-based hybrid estimation scheme for complex artifacts that robustly copes with unforeseen situations.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Hybrid Estimation at a Glance -- Probabilistic Hybrid Automata -- Hybrid Estimation -- Case Studies -- Conclusion.

This monograph provides a tool-set for hybrid estimation that can successfully monitor the behavior of complex artifacts with a large number of possible operational and failure modes such as production plants, automotive or aeronautic systems, and autonomous robots. For this purpose, ideas from the fields of System Theory and Artificial Intelligence are taken and hybrid estimation is reformulated as a search problem. This allows to focus the estimation onto highly probably operational modes, without missing symptoms that might be hidden among the noise in the system. Additionally a novel approach to continue hybrid estimation in the presence of unknown behavioral modes and to automate system analysis and synthesis tasks for on-line operation are presented. This leads to a flexible model-based hybrid estimation scheme for complex artifacts that robustly copes with unforeseen situations.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha