TEST - Catálogo BURRF
   

Identification of Nonlinear Systems Using Neural Networks and Polynomial Models : A Block-Oriented Approach / by Andrzej Janczak.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Control and Information Science ; 310Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: xiv, 197 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540315964
Formatos físicos adicionales: Edición impresa:: Sin títuloRecursos en línea:
Contenidos:
Introduction -- Neural network Wiener models -- Neural network Hammerstein models -- Polynomial Wiener models -- Polynomial Hammerstein models -- Applications.
Resumen: This monograph systematically presents the existing identification methods of nonlinear systems using the block-oriented approach It surveys various known approaches to the identification of Wiener and Hammerstein systems which are applicable to both neural network and polynomial models. The book gives a comparative study of their gradient approximation accuracy, computational complexity, and convergence rates and furthermore presents some new and original methods concerning the model parameter adjusting with gradient-based techniques. "Identification of Nonlinear Systems Using Neural Networks and Polynomal Models" is useful for researchers, engineers and graduate students in nonlinear systems and neural network theory.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Introduction -- Neural network Wiener models -- Neural network Hammerstein models -- Polynomial Wiener models -- Polynomial Hammerstein models -- Applications.

This monograph systematically presents the existing identification methods of nonlinear systems using the block-oriented approach It surveys various known approaches to the identification of Wiener and Hammerstein systems which are applicable to both neural network and polynomial models. The book gives a comparative study of their gradient approximation accuracy, computational complexity, and convergence rates and furthermore presents some new and original methods concerning the model parameter adjusting with gradient-based techniques. "Identification of Nonlinear Systems Using Neural Networks and Polynomal Models" is useful for researchers, engineers and graduate students in nonlinear systems and neural network theory.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha