TEST - Catálogo BURRF
   

Ernst Equation and Riemann Surfaces : Analytical and Numerical Methods / by Christian Klein.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Physics ; 685Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: x, 249 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540315131
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QC5.53
Recursos en línea:
Contenidos:
Introduction -- The Ernst Equation -- Riemann-Hilbert Problem and Fay's Identity -- Analyticity Properties and Limiting Cases -- Boundary Value Problems and Solutions -- Hyperelliptic Theta Functions and Spectral Methods -- Physical Properties -- Open Problems -- Riemann Surfaces and Theta Functions -- Ernst Equation and Twister Theory -- Index.
Resumen: Exact solutions to Einstein`s equations have been useful for the understanding of general relativity in many respects. They have led to physical concepts as black holes and event horizons and helped to visualize interesting features of the theory. In addition they have been used to test the quality of various approximation methods and numerical codes. The most powerful solution generation methods are due to the theory of Integrable Systems. In the case of axisymmetric stationary spacetimes the Einstein equations are equivalent to the completely integrable Ernst equation. In this volume the solutions to the Ernst equation associated to Riemann surfaces are studied in detail and physical and mathematical aspects of this class are discussed both analytically and numerically.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Introduction -- The Ernst Equation -- Riemann-Hilbert Problem and Fay's Identity -- Analyticity Properties and Limiting Cases -- Boundary Value Problems and Solutions -- Hyperelliptic Theta Functions and Spectral Methods -- Physical Properties -- Open Problems -- Riemann Surfaces and Theta Functions -- Ernst Equation and Twister Theory -- Index.

Exact solutions to Einstein`s equations have been useful for the understanding of general relativity in many respects. They have led to physical concepts as black holes and event horizons and helped to visualize interesting features of the theory. In addition they have been used to test the quality of various approximation methods and numerical codes. The most powerful solution generation methods are due to the theory of Integrable Systems. In the case of axisymmetric stationary spacetimes the Einstein equations are equivalent to the completely integrable Ernst equation. In this volume the solutions to the Ernst equation associated to Riemann surfaces are studied in detail and physical and mathematical aspects of this class are discussed both analytically and numerically.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha