TEST - Catálogo BURRF
   

The Geometry of Infinite-Dimensional Groups / by Boris Khesin, Robert Wendt.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics ; 51Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009Descripción: recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540772637
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA252.3
Recursos en línea:
Contenidos:
Preface -- Introduction -- I Preliminaries -- II Infinite-dimensional Lie Groups: Their Geometry, Orbits and Dynamical Systems -- III Applications of Groups: Topological and Holomorphic Gauge Theories -- Appendices -- A1 Root Systems -- A2 Compact Lie Groups -- A3 Krichever-Novikov Algebras -- A4 Kähler Structures on the Virasoro and Loop Group Coadjoint Orbits -- A5 Metrics and Diameters of the Group of Hamiltonian Diffeomorphisms -- A6 Semi-Direct Extensions of the Diffeomorphism Group and Gas Dynamics -- A7 The Drinfeld-Sokolov Reduction -- A8 Surjectivity of the Exponential Map on Pseudo-Differential Symbols -- A9 Torus Actions on the Moduli Space of Flat Connections -- Bibliography -- Index.
Resumen: This monograph gives an overview of various classes of infinite-dimensional Lie groups and their applications in Hamiltonian mechanics, fluid dynamics, integrable systems, gauge theory, and complex geometry. While infinite-dimensional groups often exhibit very peculiar features, this book describes unifying geometric ideas of the theory and gives numerous illustrations and examples, ranging from the classification of the Virasoro coadjoint orbits to knot theory, from optimal mass transport to moduli spaces of flat connections on surfaces. The text includes many exercises and open questions, and it is accessible to both students and researchers in Lie theory, geometry, and Hamiltonian systems.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preface -- Introduction -- I Preliminaries -- II Infinite-dimensional Lie Groups: Their Geometry, Orbits and Dynamical Systems -- III Applications of Groups: Topological and Holomorphic Gauge Theories -- Appendices -- A1 Root Systems -- A2 Compact Lie Groups -- A3 Krichever-Novikov Algebras -- A4 Kähler Structures on the Virasoro and Loop Group Coadjoint Orbits -- A5 Metrics and Diameters of the Group of Hamiltonian Diffeomorphisms -- A6 Semi-Direct Extensions of the Diffeomorphism Group and Gas Dynamics -- A7 The Drinfeld-Sokolov Reduction -- A8 Surjectivity of the Exponential Map on Pseudo-Differential Symbols -- A9 Torus Actions on the Moduli Space of Flat Connections -- Bibliography -- Index.

This monograph gives an overview of various classes of infinite-dimensional Lie groups and their applications in Hamiltonian mechanics, fluid dynamics, integrable systems, gauge theory, and complex geometry. While infinite-dimensional groups often exhibit very peculiar features, this book describes unifying geometric ideas of the theory and gives numerous illustrations and examples, ranging from the classification of the Virasoro coadjoint orbits to knot theory, from optimal mass transport to moduli spaces of flat connections on surfaces. The text includes many exercises and open questions, and it is accessible to both students and researchers in Lie theory, geometry, and Hamiltonian systems.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha