TEST - Catálogo BURRF
   

Notes on Coxeter Transformations and the McKay Correspondence / by Rafael Stekolshchik.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Springer Monographs in MathematicsEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008Descripción: recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540773993
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA251.3
Recursos en línea:
Contenidos:
Preliminaries -- The Jordan normal form of the Coxeter transformation -- Eigenvalues, splitting formulas and diagrams Tp,q,r -- R. Steinberg’s theorem, B. Kostant’s construction -- The affine Coxeter transformation.
Resumen: One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram. The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincaré series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers. On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preliminaries -- The Jordan normal form of the Coxeter transformation -- Eigenvalues, splitting formulas and diagrams Tp,q,r -- R. Steinberg’s theorem, B. Kostant’s construction -- The affine Coxeter transformation.

One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram. The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincaré series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers. On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha