TEST - Catálogo BURRF
   

Sequential Approximate Multiobjective Optimization Using Computational Intelligence / by Min Yoon, Yeboon Yun, Hirotaka Nakayama.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Vector OptimizationEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009Descripción: xvI, 200 páginas 111 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540889106
Formatos físicos adicionales: Edición impresa:: Sin títuloRecursos en línea:
Contenidos:
Basic Concepts of Multi-objective Optimization -- Interactive Programming Methods for Multi-objective Optimization -- Generation of Pareto Frontier by Genetic Algorithms -- Multi-objective Optimization and Computational Intelligence -- Sequential Approximate Optimization -- Combining Aspiration Level Approach and SAMO -- Engineering Applications.
Resumen: This book highlights a new direction of multiobjective optimzation, which has never been treated in previous publications. When the function form of objective functions is not known explicitly as encountered in many practical problems, sequential approximate optimization based on metamodels is an effective tool from a practical viewpoint. Several sophisticated methods for sequential approximate multiobjective optimization using computational intelligence are introduced along with real applications, mainly engineering problems, in this book.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Basic Concepts of Multi-objective Optimization -- Interactive Programming Methods for Multi-objective Optimization -- Generation of Pareto Frontier by Genetic Algorithms -- Multi-objective Optimization and Computational Intelligence -- Sequential Approximate Optimization -- Combining Aspiration Level Approach and SAMO -- Engineering Applications.

This book highlights a new direction of multiobjective optimzation, which has never been treated in previous publications. When the function form of objective functions is not known explicitly as encountered in many practical problems, sequential approximate optimization based on metamodels is an effective tool from a practical viewpoint. Several sophisticated methods for sequential approximate multiobjective optimization using computational intelligence are introduced along with real applications, mainly engineering problems, in this book.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha